Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 70 papers

Cell-free expression of a functional pore-only sodium channel.

  • Gabriela Kovácsová‎ et al.
  • Protein expression and purification‎
  • 2015‎

Voltage-gated sodium channels participate in the propagation of action potentials in excitable cells. Eukaryotic Navs are pseudo homotetrameric polypeptides, comprising four repeats of six transmembrane segments (S1-S6). The first four segments form the voltage-sensing domain and S5 and S6 create the pore domain with the selectivity filter. Prokaryotic Navs resemble these characteristics, but are truly tetrameric. They can typically be efficiently synthesized in bacteria, but production in vitro with cell-free synthesis has not been demonstrated. Here we report the cell-free expression and purification of a prokaryotic tetrameric pore-only sodium channel. We produced milligram quantities of the functional channel protein as characterized by size-exclusion chromatography, infrared spectroscopy and electrophysiological recordings. Cell-free expression enables advanced site-directed labelling, post-translational modifications, and special solubilization schemes. This enables next-generation biophysical experiments to study the principle of sodium ion selectivity and transport in sodium channels.


Upregulated long intergenic noncoding RNA KRT18P55 acts as a novel biomarker for the progression of intestinal-type gastric cancer.

  • Bin Ma‎ et al.
  • OncoTargets and therapy‎
  • 2016‎

Long noncoding RNAs (lncRNAs) with dysregulated expression levels have been investigated in numerous types of different cancer. Whether lncRNAs can predict the progression of gastric cancer (GC) still remains largely unclear. The aim of our study was to investigate whether KRT18P55, a novel intergenic lncRNA, can be a predictive biomarker for GC.


High Level of Anaphylatoxin C5a Predicts Poor Clinical Outcome in Patients with Clear Cell Renal Cell Carcinoma.

  • Wei Xi‎ et al.
  • Scientific reports‎
  • 2016‎

Anaphylatoxin C5a, a potent pro-inflammatory peptide produced in the process of complement activation, was proved to have a vital role in tumor initiation and progession by previous investigations. However whether it could act as a prognostic marker remains unknown. Here we retrospectively enrolled 272 ccRCC patients undergoing nephrectomy in Zhongshan Hospital, Shanghai between 2005 and 2007. C5a level was assessed by immunohistochemistry and its association with clinicopathologic features and prognosis were evaluated. Our results indicated that high tumoral C5a level was associated with poor overall survival (OS) (hazard ratio = 1.753, 95% CI 1.068-2.878, P = 0.026). In addition, tumoral C5a could significantly stratify patients' prognosis both in advanced stage (TNM III + IV) and intermediate/high risk group (SSIGN score ≥4) (P < 0.001 and = 0.008, respectively). Furthermore, incorporating tumoral C5a with other parameters could improve the predicting accuracy, compared with TNM and SSIGN system (c-index = 0.789, 0.713 and 0.727, respectively). In conclusion, tumoral C5a is an independent adverse prognostic biomarker for clinical outcome of ccRCC patients after nephectomy.


Mechanistic aspects of maltotriose-conjugate translocation to the Gram-negative bacteria cytoplasm.

  • Estelle Dumont‎ et al.
  • Life science alliance‎
  • 2019‎

Small molecule accumulation in Gram-negative bacteria is a key challenge to discover novel antibiotics, because of their two membranes and efflux pumps expelling toxic molecules. An approach to overcome this challenge is to hijack uptake pathways so that bacterial transporters shuttle the antibiotic to the cytoplasm. Here, we have characterized maltodextrin-fluorophore conjugates that can pass through both the outer and inner membranes mediated by components of the Escherichia coli maltose regulon. Single-channel electrophysiology recording demonstrated that the compounds permeate across the LamB channel leading to accumulation in the periplasm. We have also demonstrated that a maltotriose conjugate distributes into both the periplasm and cytoplasm. In the cytoplasm, the molecule activates the maltose regulon and triggers the expression of maltose binding protein in the periplasmic space indicating that the complete maltose entry pathway is induced. This maltotriose conjugate can (i) reach the periplasmic and cytoplasmic compartments to significant internal concentrations and (ii) auto-induce its own entry pathway via the activation of the maltose regulon, representing an interesting prototype to deliver molecules to the cytoplasm of Gram-negative bacteria.


Bis(propyl)-cognitin potentiates rehabilitation of treadmill exercise after a transient focal cerebral ischemia, possibly via inhibiting NMDA receptor and regulating VEGF expression.

  • Zheng Ke‎ et al.
  • Neurochemistry international‎
  • 2019‎

Combination therapies may have greater efficacy compared with monotherapy in treating stroke. We investigated the molecular mechanisms by which the combination of bis(propyl)-cognitin, an uncompetitive antagonist of NMDA receptor, and treadmill exercise promote rehabilitation after ischemic stroke. Rats were distributed into 3 treatment groups: infarct/bis(propyl)-cognitin(drug only group, DO); infarct/treadmill exercise(exercise only group, EO); infarct/bis(propyl)-cognitin + treadmill exercise (drug + exercise group, DE). The DE group had further separated to 3 sub-groups to investigate the effects achieved by different time for drug administration (60 min before stroke (DE-60 m), 15 min (DE+15 m) and 60 min (DE+60 m) after stroke). Although all infarct groups improved over time, the combination of bis(propyl)-cognitin and treadmill exercise effectively enhanced motor recovery during 14-day intervention. Early drug intervention has a best recovery result, the DE+15 m group with drug intervention at 15-min after stroke had better motor recovery than DE+60 m, DO, EO and control groups. Both bis(propyl)-cognitin and treadmill exercise significantly elevated brain VEGF expression and decreased brain infarct volume at 14 day post-ischemia. Our study reveals that bis(propyl)-cognitin potentiated rehabilitation of treadmill exercise after ischemic stroke, possibly via regulating brain VEGF expression, indicating that the combination of NMDA receptor antagonists and exercise might be useful for stroke rehabilitation.


Intratumoral CCR5+ neutrophils identify immunogenic subtype muscle-invasive bladder cancer with favorable prognosis and therapeutic responses.

  • Zhuoyi Xiang‎ et al.
  • Oncoimmunology‎
  • 2020‎

Our previous studies revealed tumor-infiltrating neutrophils (TINs) played dichotomous roles in different cancers, indicating diverse TINs subtypes might orchestrate anti-tumor immunity or immune evasion, respectively. This study aimed to investigate the clinical significance and immune characteristics of CCR5+TINs in muscle-invasive bladder cancer (MIBC). Two hundred and fifty-seven MIBC patients from two clinical centers and 95 fresh MIBC samples were included. CCR5+TINs were stained by immunohistochemistry, and the relationship between patients' clinic-pathological features and prognosis was evaluated, respectively. Immunohistochemistry and flow cytometry were applied to assess the immune features of CCR5+TINs and their correlations with other immune cells. In vitro study was conducted to estimate immune characteristics of CCR5+TINs and their predictive potential for pembrolizumab therapeutic response. In the two MIBC cohorts, we found that high CCR5+TINs infiltration could predict better overall survival (OS, P= .032, 0.039) and recurrence-free survival (RFS, P= .001, 0.006) and be associated with survival benefit from adjuvant chemotherapy (ACT, P< .001 for OS and P= .022 for RFS, respectively) in merely pT2N0 MIBC. Maraviroc could partly reduce IFN-γ secretion by CCR5+TINs (P< .001). CCR5+TINs correlated with higher expression of effector molecules within CD8+T cells. Notably, pembrolizumab treatment could only elevate the apoptosis status of tumor cells in the CCR5+TINs high subgroup (P < .001), other than CCR5+TINs low subgroup (P= .481). Our results indicate that CCR5+TINs could prime anti-tumor immune response through autonomous IFN-γ release, thus leading to favorable prognosis and superior therapeutic response to ACT and immunotherapy in MIBC.


IRF5 is associated with adverse postoperative prognosis of patients with non-metastatic clear cell renal cell carcinoma.

  • Qi Bai‎ et al.
  • Oncotarget‎
  • 2017‎

IRF5 is one member of IRFs family, and is critical for host immunity and cell response. In the present study, we sought to search the clinical and prognostic value of IFR5 in patients with non-metastatic ccRCC.


Prognostic value of CC-chemokine receptor seven expression in patients with metastatic renal cell carcinoma treated with tyrosine kinase inhibitor.

  • Yu Xia‎ et al.
  • BMC cancer‎
  • 2017‎

CC-chemokine receptor seven (CCR7), a G-protein coupled receptor normally facilitating immune cells lymphatic homing, has recently been identified on several cancer cells in promoting invasion and lymphatic specific metastasis by mimicking normal leukocytes. As tyrosine kinase inhibitors for metastatic renal cell carcinoma (mRCC) mostly emphasized on vascular inhibition, whether the CCR7 expressing tumor cells with potential lymphatic invasion function could have an impact on mRCC patient's drug response and survival, was unknown.


Angiotensin-II-induced Muscle Wasting is Mediated by 25-Hydroxycholesterol via GSK3β Signaling Pathway.

  • Congcong Shen‎ et al.
  • EBioMedicine‎
  • 2017‎

While angiotensin II (ang II) has been implicated in the pathogenesis of cardiac cachexia (CC), the molecules that mediate ang II's wasting effect have not been identified. It is known TNF-α level is increased in patients with CC, and TNF-α release is triggered by ang II. We therefore hypothesized that ang II induced muscle wasting is mediated by TNF-α. Ang II infusion led to skeletal muscle wasting in wild type (WT) but not in TNF alpha type 1 receptor knockout (TNFR1KO) mice, suggesting that ang II induced muscle loss is mediated by TNF-α through its type 1 receptor. Microarray analysis identified cholesterol 25-hydroxylase (Ch25h) as the down stream target of TNF-α. Intraperitoneal injection of 25-hydroxycholesterol (25-OHC), the product of Ch25h, resulted in muscle loss in C57BL/6 mice, accompanied by increased expression of atrogin-1, MuRF1 and suppression of IGF-1/Akt signaling pathway. The identification of 25-OHC as an inducer of muscle wasting has implications for the development of specific treatment strategies in preventing muscle loss.


CCR5 blockade inflames antitumor immunity in BAP1-mutant clear cell renal cell carcinoma.

  • Quan Zhou‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2020‎

Patients with BRCA1-associated protein 1 (BAP1)-mutant clear cell renal cell carcinoma (ccRCC) have worse prognosis. C-C chemokine receptor 5 (CCR5) plays an important role in ccRCC development and its expression is elevated in BAP1-mutant tumors.


Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage.

  • Fang Zhang‎ et al.
  • Nature communications‎
  • 2020‎

Single-crystal cathode materials for lithium-ion batteries have attracted increasing interest in providing greater capacity retention than their polycrystalline counterparts. However, after being cycled at high voltages, these single-crystal materials exhibit severe structural instability and capacity fade. Understanding how the surface structural changes determine the performance degradation over cycling is crucial, but remains elusive. Here, we investigate the correlation of the surface structure, internal strain, and capacity deterioration by using operando X-ray spectroscopy imaging and nano-tomography. We directly observe a close correlation between surface chemistry and phase distribution from homogeneity to heterogeneity, which induces heterogeneous internal strain within the particle and the resulting structural/performance degradation during cycling. We also discover that surface chemistry can significantly enhance the cyclic performance. Our modified process effectively regulates the performance fade issue of single-crystal cathode and provides new insights for improved design of high-capacity battery materials.


Photonic-dispersion neural networks for inverse scattering problems.

  • Tongyu Li‎ et al.
  • Light, science & applications‎
  • 2021‎

Inferring the properties of a scattering objective by analyzing the optical far-field responses within the framework of inverse problems is of great practical significance. However, it still faces major challenges when the parameter range is growing and involves inevitable experimental noises. Here, we propose a solving strategy containing robust neural-networks-based algorithms and informative photonic dispersions to overcome such challenges for a sort of inverse scattering problem-reconstructing grating profiles. Using two typical neural networks, forward-mapping type and inverse-mapping type, we reconstruct grating profiles whose geometric features span hundreds of nanometers with nanometric sensitivity and several seconds of time consumption. A forward-mapping neural network with a parameters-to-point architecture especially stands out in generating analytical photonic dispersions accurately, featured by sharp Fano-shaped spectra. Meanwhile, to implement the strategy experimentally, a Fourier-optics-based angle-resolved imaging spectroscopy with an all-fixed light path is developed to measure the dispersions by a single shot, acquiring adequate information. Our forward-mapping algorithm can enable real-time comparisons between robust predictions and experimental data with actual noises, showing an excellent linear correlation (R2 > 0.982) with the measurements of atomic force microscopy. Our work provides a new strategy for reconstructing grating profiles in inverse scattering problems.


Storax Attenuates Cardiac Fibrosis following Acute Myocardial Infarction in Rats via Suppression of AT1R-Ankrd1-P53 Signaling Pathway.

  • Zhuo Xu‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Myocardial fibrosis following acute myocardial infarction (AMI) seriously affects the prognosis and survival rate of patients. This study explores the role and regulation mechanism of storax, a commonly used traditional Chinese medicine for treatment of cardiovascular diseases, on myocardial fibrosis and cardiac function. The AMI rat model was established by subcutaneous injection of Isoproterenol hydrochloride (ISO). Storax (0.1, 0.2, 0.4 g/kg) was administered by gavage once/d for 7 days. Electrocardiogram, echocardiography, hemodynamic and cardiac enzyme in AMI rats were measured. HE, Masson, immunofluorescence and TUNEL staining were used to observe the degree of pathological damage, fibrosis and cardiomyocyte apoptosis in myocardial tissue, respectively. Expression of AT1R, CARP and their downstream related apoptotic proteins were detected by WB. The results demonstrated that storax could significantly improve cardiac electrophysiology and function, decrease serum cardiac enzyme activity, reduce type I and III collagen contents to improve fibrosis and alleviate myocardial pathological damage and cardiomyocyte apoptosis. It also found that storax can significantly down-regulate expression of AT1R, Ankrd1, P53, P-p53 (ser 15), Bax and cleaved Caspase-3 and up-regulate expression of Mdm2 and Bcl-2. Taken together, these findings indicated that storax effectively protected cardiomyocytes against myocardial fibrosis and cardiac dysfunction by inhibiting the AT1R-Ankrd1-P53 signaling pathway.


HMOX1 pathway signature predicts clinical benefit from immunotherapy plus tyrosine kinase inhibitor therapy in advanced renal cell carcinoma.

  • Xianglai Xu‎ et al.
  • Cancer medicine‎
  • 2023‎

Immunotherapy (IO) plus tyrosine kinase inhibitor (TKI) emerged as standard first-line therapy for advanced renal cell carcinoma (RCC). The heme Oxygenase 1 (HMOX1) pathway is involved in tumor development and treatment resistance, which may affect the efficacy of TKI + IO.


Full-field electroretinogram recorded with skin electrodes in 6- to 12-year-old children.

  • Jiajun Wang‎ et al.
  • Documenta ophthalmologica. Advances in ophthalmology‎
  • 2023‎

To determine the full-field electroretinogram (ffERG) parameters, including the light-adapted (LA) 3 ERG and the photopic negative response (PhNR), in 6- to 12-year-old children.


Compound Danshen tablets downregulate amyloid protein precursor mRNA expression in a transgenic cell model of Alzheimer's disease: Effects and a comparison with donepezil.

  • Ren'an Qin‎ et al.
  • Neural regeneration research‎
  • 2012‎

After gene mutation, the pcDNA3.1/APP595/596 plasmid was transfected into HEK293 cells to establish a cell model of Alzheimer's disease. The cell model was treated with donepezil or compound Danshen tablets after culture for 72 hours. Reverse transcription-PCR showed that the mRNA expression of amyloid protein precursor decreased in all groups following culture for 24 hours, and that there was no significant difference in the amount of decrease between donepezil and compound Danshen tablets. Our results suggest that compound Danshen tablets can reduce expression of the mRNA for amyloid protein precursor in a transgenic cell model of Alzheimer's disease, with similar effects to donepezil.


Antimicrobial properties and membrane-active mechanism of a potential α-helical antimicrobial derived from cathelicidin PMAP-36.

  • Yinfeng Lv‎ et al.
  • PloS one‎
  • 2014‎

Antimicrobial peptides (AMPs), which present in the non-specific immune system of organism, are amongst the most promising candidates for the development of novel antimicrobials. The modification of naturally occurring AMPs based on their residue composition and distribution is a simple and effective strategy for optimization of known AMPs. In this study, a series of truncated and residue-substituted derivatives of antimicrobial peptide PMAP-36 were designed and synthesized. The 24-residue truncated peptide, GI24, displayed antimicrobial activity comparable to the mother peptide PMAP-36 with MICs ranging from 1 to 4 µM, which is lower than the MICs of bee venom melittin. Although GI24 displayed high antimicrobial activity, its hemolytic activity was much lower than melittin, suggesting that GI24 have optimal cell selectivity. In addition, the crucial site of GI24 was identified through single site-mutation. An amino acid with high hydrophobicity at position 23 played an important role in guaranteeing the high antimicrobial activity of GI24. Then, lipid vesicles and whole bacteria were employed to investigate the membrane-active mechanisms. Membrane-simulating experiments showed that GI24 interacted strongly with negatively charged phospholipids and weakly with zwitterionic phospholipids, which corresponded well with the data of its biological activities. Membrane permeabilization and flow cytometry provide the evidence that GI24 killed microbial cells by permeabilizing the cell membrane and damaging membrane integrity. GI24 resulted in greater cell morphological changes and visible pores on cell membrane as determined using scanning electron microscopy (SEM) and transmission electron microscope (TEM). Taken together, the peptide GI24 may provide a promising antimicrobial agent for therapeutic applications against the frequently-encountered bacteria.


Dot1l expression predicts adverse postoperative prognosis of patients with clear-cell renal cell carcinoma.

  • Yang Qu‎ et al.
  • Oncotarget‎
  • 2016‎

Disruptor of telomeric silencing 1-like (Dot1l), a histone methyltransferase that targets the histone H3 lysine 79 (H3K79), has been reported that its high expression is associated with various cancers, while the association between Dot1l expression and clear-cell renal cell carcinoma (ccRCC) is still unknown.


The Asymmetric Expression of SAUR Genes Mediated by ARF7/19 Promotes the Gravitropism and Phototropism of Plant Hypocotyls.

  • Xiaoyi Wang‎ et al.
  • Cell reports‎
  • 2020‎

The asymmetric distribution of auxin leads to the bending growth of hypocotyls during gravitropic and phototropic responses, but the signaling events downstream of auxin remain unclear. Here, we identify many SAUR genes showing asymmetric expression in soybean hypocotyls during gravistimulation and then study their homologs in Arabidopsis. SAUR19 subfamily genes have asymmetric expression in Arabidopsis hypocotyls during gravitropic and phototropic responses, induced by the lateral redistribution of auxin. Both the mutation of SAUR19 subfamily genes and the ectopic expression of SAUR19 weaken these tropic responses, indicating the critical role of their asymmetric expression. The auxin-responsive transcription factor ARF7 may directly bind the SAUR19 promoter and activate SAUR19 expression asymmetrically in tropic responses. Taken together, our results reveal that a gravity- or light-triggered asymmetric auxin distribution induces the asymmetric expression of SAUR19 subfamily genes by ARF7 and ARF19 in the hypocotyls, which leads to bending growth during gravitropic and phototropic responses.


Intratumoral TIGIT+ CD8+ T-cell infiltration determines poor prognosis and immune evasion in patients with muscle-invasive bladder cancer.

  • Zhaopei Liu‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2020‎

T-cell immunoglobulin and ITIM domain (TIGIT) is identified as a novel checkpoint receptor that can facilitate immune escape via mediating T-cell exhaustion in tumors. However, the clinical significance and immune contexture correlation of intratumoral TIGIT+ CD8+ T-cells remain to be further explored in muscle-invasive bladder cancer (MIBC).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: