Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Phosphorylation-Mediated IFN-γR2 Membrane Translocation Is Required to Activate Macrophage Innate Response.

  • Xiaoqing Xu‎ et al.
  • Cell‎
  • 2018‎

As a critical step during innate response, the cytoplasmic β subunit (IFN-γR2) of interferon-γ receptor (IFN-γR) is induced and translocates to plasma membrane to join α subunit to form functional IFN-γR to mediate IFN-γ signaling. However, the mechanism driving membrane translocation and its significance remain largely unknown. We found, unexpectedly, that mice deficient in E-selectin, an endothelial cell-specific adhesion molecule, displayed impaired innate activation of macrophages upon Listeria monocytogenes infection yet had increased circulating IFN-γ. Inflammatory macrophages from E-selectin-deficient mice had less surface IFN-γR2 and impaired IFN-γ signaling. BTK elicited by extrinsic E-selectin engagement phosphorylates cytoplasmic IFN-γR2, facilitating EFhd2 binding and promoting IFN-γR2 trafficking from Golgi to cell membrane. Our findings demonstrate that membrane translocation of cytoplasmic IFN-γR2 is required to activate macrophage innate response against intracellular bacterial infection, identifying the assembly of functional cytokine receptors on cell membrane as an important layer in innate activation and cytokine signaling.


Long Non-coding RNA LINC01094 Promotes the Development of Clear Cell Renal Cell Carcinoma by Upregulating SLC2A3 via MicroRNA-184.

  • Haifei Xu‎ et al.
  • Frontiers in genetics‎
  • 2020‎

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of RCC. Compelling evidence has highlighted the crucial role of long non-coding RNA (lncRNA) in ccRCC. Our current study aims to explore the regulatory mechanism of LINC01094 in the development of ccRCC. Dual-luciferase reporter experiment verified the targeting relationship among miR-184, LINC01094, and SLC2A3. Furthermore, the interaction between LINC01094 and miR-184 was confirmed by RNA immunoprecipitation (RIP) and RNA pull-down. Biological behaviors of ccRCC cells were investigated through cell counting kit-8 (CCK8), scratch test, Transwell, and flow cytometry. The effect of SLC2A3 on the tumorigenicity of nude mice was evaluated in vivo. In ccRCC cells and clinical tissues, LINC01094 and SLC2A3 were highly expressed while miR-184 was lowly expressed. Besides, miR-184 was verified to be a direct target of LINC01094. Silencing LINC01094, up-regulating miR-184, or reducing SLC2A3 inhibited the growth, migration, and invasion of ccRCC cells. Tumor growth was suppressed by silenced LINC01215 via reducing the expression of SLC2A3 via miR-184. Taken together, silencing LINC01094 inhibited SLC2A3 expression by up-regulating miR-184, thereby inhibiting the development of ccRCC.


Parasite-Derived Excretory-Secretory Products Alleviate Gut Microbiota Dysbiosis and Improve Cognitive Impairment Induced by a High-Fat Diet.

  • Jiacheng Wu‎ et al.
  • Frontiers in immunology‎
  • 2021‎

High-fat (HF) diet-induced neuroinflammation and cognitive decline in humans and animals have been associated with microbiota dysbiosis via the gut-brain axis. Our previous studies revealed that excretory-secretory products (ESPs) derived from the larval Echinococcus granulosus (E. granulosus) function as immunomodulators to reduce the inflammatory response, while the parasitic infection alleviates metabolic disorders in the host. However, whether ESPs can improve cognitive impairment under obese conditions remain unknown. This study aimed to investigate the effects of E. granulosus-derived ESPs on cognitive function and the microbiota-gut-brain axis in obese mice. We demonstrated that ESPs supplementation prevented HF diet-induced cognitive impairment, which was assessed behaviorally by nest building, object location, novel object recognition, temporal order memory, and Y-maze memory tests. In the hippocampus (HIP) and prefrontal cortex (PFC), ESPs suppressed neuroinflammation and HF diet-induced activation of the microglia and astrocytes. Moreover, ESPs supplementation improved the synaptic ultrastructural impairments and increased both pre- and postsynaptic protein levels in the HIP and PFC compared to the HF diet-treated group. In the colon, ESPs reversed the HF diet-induced gut barrier dysfunction, increased the thickness of colonic mucus, upregulated the expression of zonula occludens-1 (ZO-1), attenuated the translocation of bacterial endotoxins, and decreased the colon inflammation. Notably, ESPs supplementation alleviated the HF diet-induced microbiota dysbiosis. After clarifying the role of antibiotics in obese mice, we found that broad-spectrum antibiotic intervention abrogated the effects of ESPs on improving the gut microbiota dysbiosis and cognitive decline. Overall, the present study revealed for the first time that the parasite-derived ESPs alleviate gut microbiota dysbiosis and improve cognitive impairment induced by a high-fat diet. This finding suggests that parasite-derived molecules may be used to explore novel drug candidates against obesity-associated neurodegenerative diseases.


CircSMARCC1 facilitates tumor progression by disrupting the crosstalk between prostate cancer cells and tumor-associated macrophages via miR-1322/CCL20/CCR6 signaling.

  • Tao Xie‎ et al.
  • Molecular cancer‎
  • 2022‎

Circular RNAs (circRNAs) mediate the infiltration of tumor-associated macrophages (TAMs) to facilitate carcinogenesis and development of various types of cancers. However, the role of circRNAs in regulating macrophages in prostate cancer (PCa) remains uncertain.


Polyene Phosphatidylcholine Ameliorates High Fat Diet-Induced Non-alcoholic Fatty Liver Disease via Remodeling Metabolism and Inflammation.

  • Yang Lu‎ et al.
  • Frontiers in physiology‎
  • 2022‎

Recent years have witnessed a rise in the morbidity of non-alcoholic fatty liver disease (NAFLD), in line with the global outbreak of obesity. However, effective intervention strategy against NAFLD is still unavailable. The present study sought to investigate the effect and mechanism of polyene phosphatidylcholine (PPC), a classic hepatoprotective drug, on NAFLD induced by high fat diet (HFD). We found that PPC intervention reduced the mass of liver, subcutaneous, epididymal, and brown fats in HFD mice. Furthermore, PPC supplementation significantly mitigated liver steatosis and improved glucose tolerance and insulin sensitivity in HFD mice, which was accompanied by declined levels of hepatic triglyceride, serum triglyceride, low density lipoprotein, aspartate aminotransferase, and alanine aminotransferase. Using transcriptome analysis, there were 1,789 differentially expressed genes (| fold change | ≥ 2, P < 0.05) including 893 upregulated genes and 896 downregulated genes in the HFD group compared to LC group. A total of 1,114 upregulated genes and 1,337 downregulated genes in HFD + PPC group were identified in comparison to HFD group. With the help of Gene Ontology (GO) analysis, these differentially expressed genes between HFD+PPC and HFD group were discovered related to "lipid metabolic process (GO: 0006629)," "lipid modification (GO: 0030258)," and "lipid homeostasis (GO: 0055088)". Though Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we found pathways associated with hepatic homeostasis of metabolism and inflammation. Notably, the pathway "Non-alcoholic fatty liver disease (mmu04932)" (P-value = 0.00698) was authenticated in the study, which may inspire the potential mechanism of PPC to ameliorate NAFLD. The study also found that lipolysis, fatty acid oxidation, and lipid export associated genes were upregulated, while the genes in uptake of lipids and cholesterol synthesis were downregulated in the liver of HFD mice after PPC supplementation. Interestingly, PPC attenuated the metabolic inflammation via inhibiting pro-inflammatory macrophage in the livers of mice fed by HFD. In summary, this study demonstrates that PPC can ameliorate HFD-induced liver steatosis via reprogramming metabolic and inflammatory processes, which inspire clues for further clarifying the intervention mechanism of PPC against NAFLD.


Synergistic horizontal transfer of antibiotic resistance genes and transposons in the infant gut microbial genome.

  • Yanwen Ding‎ et al.
  • mSphere‎
  • 2024‎

Transposons, plasmids, bacteriophages, and other mobile genetic elements facilitate horizontal gene transfer in the gut microbiota, allowing some pathogenic bacteria to acquire antibiotic resistance genes (ARGs). Currently, the relationship between specific ARGs and specific transposons in the comprehensive infant gut microbiome has not been elucidated. In this study, ARGs and transposons were annotated from the Unified Human Gastrointestinal Genome (UHGG) and the Early-Life Gut Genomes (ELGG). Association rules mining was used to explore the association between specific ARGs and specific transposons in UHGG, and the robustness of the association rules was validated using the external database in ELGG. Our results suggested that ARGs and transposons were more likely to be relevant in infant gut microbiota compared to adult gut microbiota, and nine robust association rules were identified, among which Klebsiella pneumoniae, Enterobacter hormaechei_A, and Escherichia coli_D played important roles in this association phenomenon. The emphasis of this study is to investigate the synergistic transfer of specific ARGs and specific transposons in the infant gut microbiota, which can contribute to the study of microbial pathogenesis and the ARG dissemination dynamics.IMPORTANCEThe transfer of transposons carrying antibiotic resistance genes (ARGs) among microorganisms accelerates antibiotic resistance dissemination among infant gut microbiota. Nonetheless, it is unclear what the relationship between specific ARGs and specific transposons within the infant gut microbiota. K. pneumoniae, E. hormaechei_A, and E. coli_D were identified as key players in the nine robust association rules we discovered. Meanwhile, we found that infant gut microorganisms were more susceptible to horizontal gene transfer events about specific ARGs and specific transposons than adult gut microorganisms. These discoveries could enhance the understanding of microbial pathogenesis and the ARG dissemination dynamics within the infant gut microbiota.


Dimethyl itaconate ameliorates cognitive impairment induced by a high-fat diet via the gut-brain axis in mice.

  • Wei Pan‎ et al.
  • Microbiome‎
  • 2023‎

Gut homeostasis, including intestinal immunity and microbiome, is essential for cognitive function via the gut-brain axis. This axis is altered in high-fat diet (HFD)-induced cognitive impairment and is closely associated with neurodegenerative diseases. Dimethyl itaconate (DI) is an itaconate derivative and has recently attracted extensive interest due to its anti-inflammatory effect. This study investigated whether intraperitoneal administration of DI improves the gut-brain axis and prevents cognitive deficits in HF diet-fed mice.


Ectopic Overexpression of a Novel R2R3-MYB, NtMYB2 from Chinese Narcissus Represses Anthocyanin Biosynthesis in Tobacco.

  • Muhammad Anwar‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

R2R3 MYB transcription factors play key functions in the regulation of secondary metabolites. In the present study, a R2R3 MYB transcriptional factor NtMYB2 was identified from Chinese narcissus (Narcissus tazetta L. var. Chinensis Roem) and functionally characterized. NtMYB2 belongs to subgroup 4 of the R2R3 MYB transcription factor family that are related to repressor MYBs involved in the regulation of anthocyanin and flavonoids. Transient expression confirmed that NtMYB2 strongly reduced the red pigmentation induced by MYB- anthocyanin activators in agro-infiltrated tobacco leaves. Ectopic expression of NtMYB2 in tobacco significantly reduced the pigmentation and altered the floral phenotypes in transgenic tobacco flowers. Gene expression analysis suggested that NtMYB2 repressed the transcript levels of structural genes involved in anthocyanin biosynthesis pathway, especially the UFGT gene. NtMYB2 gene is expressed in all examined narcissus tissues; the levels of transcription in petals and corona is higher than other tissues and the transcription level at the bud stage was highest. These results show that NtMYB2 is involved in the regulation of anthocyanin biosynthesis pathway and may act as a repressor by down regulating the transcripts of key enzyme genes in Chinese narcissus.


Temporal development and potential interactions between the gut microbiome and resistome in early childhood.

  • Lanlan Zhao‎ et al.
  • Microbiology spectrum‎
  • 2024‎

Antimicrobial resistance-associated infections have become a major threat to global health. The gut microbiome serves as a major reservoir of bacteria with antibiotic resistance genes; whereas, the temporal development of gut resistome during early childhood and the factors influencing it remain unclear. Moreover, the potential interactions between gut microbiome and resistome still need to be further explored. In this study, we found that antibiotic treatment led to destabilization of the gut microbiome and resistome structural communities, exhibiting a greater impact on the resistome than on the microbiome. The composition of the gut resistome at various developmental stages was influenced by the abundance and richness of different core microbes. First exposure to antibiotics led to a dramatic increase in the number of opportunistic pathogens carrying multidrug efflux pump encoding genes. Multiple factors could influence the gut microbiome and resistome formation. The data may provide new insights into early-life research.IMPORTANCEIn recent years, the irrational or inappropriate use of antibiotics, an important life-saving medical intervention, has led to the emergence and increase of drug-resistant and even multidrug-resistant bacteria. It remains unclear how antibiotic exposure affects various developmental stages of early childhood and how gut core microbes under antibiotic exposure affect the structural composition of the gut resistome. In this study, we focused on early antibiotic exposure and analyzed these questions in detail using samples from infants at various developmental stages. The significance of our research is to elucidate the impact of early antibiotic exposure on the dynamic patterns of the gut resistome in children and to provide new insights for early-life studies.


EFHD2 suppresses intestinal inflammation by blocking intestinal epithelial cell TNFR1 internalization and cell death.

  • Jiacheng Wu‎ et al.
  • Nature communications‎
  • 2024‎

TNF acts as one pathogenic driver for inducing intestinal epithelial cell (IEC) death and substantial intestinal inflammation. How the IEC death is regulated to physiologically prevent intestinal inflammation needs further investigation. Here, we report that EF-hand domain-containing protein D2 (EFHD2), highly expressed in normal intestine tissues but decreased in intestinal biopsy samples of ulcerative colitis patients, protects intestinal epithelium from TNF-induced IEC apoptosis. EFHD2 inhibits TNF-induced apoptosis in primary IECs and intestinal organoids (enteroids). Mice deficient of Efhd2 in IECs exhibit excessive IEC death and exacerbated experimental colitis. Mechanistically, EFHD2 interacts with Cofilin and suppresses Cofilin phosphorylation, thus blocking TNF receptor I (TNFR1) internalization to inhibit IEC apoptosis and consequently protecting intestine from inflammation. Our findings deepen the understanding of EFHD2 as the key regulator of membrane receptor trafficking, providing insight into death receptor signals and autoinflammatory diseases.


Bioinformatic Analysis of Circular RNA-Associated ceRNA Network Associated with Hepatocellular Carcinoma.

  • Jiacheng Wu‎ et al.
  • BioMed research international‎
  • 2019‎

Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and is associated with a high mortality rate and poor treatment efficacy. In an attempt to investigate the mechanisms involved in the pathogenesis of HCC, bioinformatic analysis and validation by qRT-PCR were performed. Three circRNA GEO datasets and one miRNA GEO dataset were selected for this purpose. Upon combined biological prediction, a total of 11 differentially expressed circRNAs, 15 differentially expressed miRNAs, and 560 target genes were screened to construct a circRNA-related ceRNA network. GO analysis and KEGG pathway analysis were performed for the 560 target genes. To further screen key genes, a protein-protein interaction network of the target genes was constructed using STRING, and the genes and modules with higher degree were identified by MCODE and CytoHubba plugins of Cytoscape. Subsequently, a module was screened out and subjected to GO enrichment analysis and KEGG pathway analysis. This module included eight genes, which were further screened using TCGA. Finally, UBE2L3 was selected as a key gene and the hsa_circ_0009910-miR-1261-UBE2L3 regulatory axis was established. The relative expression of the regulatory axis members was confirmed by qRT-PCR in 30 pairs of samples, including HCC tissues and adjacent nontumor tissues. The results suggested that hsa_circ_0009910, which was upregulated in HCC tissues, participates in the pathogenesis of HCC by acting as a sponge of miR-1261 to regulate the expression of UBE2L3. Overall, this study provides support for the possible mechanisms of progression in HCC.


Construction of an algorithm based on oncosis-related LncRNAs comprising the molecular subtypes and a risk assessment model in lung adenocarcinoma.

  • Hang Chen‎ et al.
  • Journal of clinical laboratory analysis‎
  • 2022‎

As an important non-apoptotic cell death method, oncosis has been reported to be closely associated with tumors in recent years. However, few research reported the relationship between oncosis and lung cancer.


Lysine methyltransferase SMYD2 inhibits antiviral innate immunity by promoting IRF3 dephosphorylation.

  • Jiacheng Wu‎ et al.
  • Cell death & disease‎
  • 2023‎

Phosphorylation of IRF3 is critical to induce type I interferon (IFN-I) production in antiviral innate response. Here we report that lysine methyltransferase SMYD2 inhibits the expressions of IFN-I and proinflammatory cytokines in macrophages upon viral infections. The Smyd2-deficient mice are more resistant to viral infection by producing more IFN-I and proinflammatory cytokines. Mechanistically, SMYD2 inhibits IRF3 phosphorylation in macrophages in response to viral infection independent of its methyltransferase activity. We found that SMYD2 interacts with the DNA-binding domain (DBD) and IRF association domain (IAD) domains of IRF3 by its insertion SET domain (SETi) and could recruit phosphatase PP1α to enhance its interaction with IRF3, which leads to decreased phosphorylation of IRF3 in the antiviral innate response. Our study identifies SMYD2 as a negative regulator of IFN-I production against virus infection. The new way of regulating IRF3 phosphorylation will provide insight into the understanding of IFN-I production in the innate response and possible intervention of the related immune disorders.


Virus-induced lncRNA-BTX allows viral replication by regulating intracellular translocation of DHX9 and ILF3 to induce innate escape.

  • Yang Cao‎ et al.
  • Cell reports‎
  • 2023‎

The roles of long noncoding RNA (lncRNA) and RNA-binding proteins (RBPs) in antiviral innate response warrant further investigation. Here, we identify an lncRNA, termed lncRNA-BTX (between Tbk1 and Xpot), which is upregulated upon viral infection via an IRF3-type I interferon-independent pathway, promoting viral innate immune escape. Deletion of lncRNA-BTX in cells or mice significantly reduces viral load in vitro or in vivo, respectively. Mechanistically, lncRNA-BTX strengthens the interactions between DHX9 or ILF3 (two RBPs that have opposite functions in regulating the replication of RNA virus) and their respective partner, JMJD6 or ILF2, which regulates intracellular translocations of DHX9 and ILF3 from the nucleus to the cytoplasm. Put simply, lncRNA-BTX facilitates DHX9's return to the cytoplasm and retains ILF3 within the nucleus, promoting viral replication. This work unveils a strategy developed by the virus to bypass host innate immunity, thus providing a potential target for antiviral therapeutics.


Low Expression of Keratin17 is Related to Poor Prognosis in Bladder Cancer.

  • Jiacheng Wu‎ et al.
  • OncoTargets and therapy‎
  • 2021‎

To investigate the association between KRT17 and the prognosis in bladder cancer patients.


Predictive value of the hemoglobin, albumin, lymphocyte, and platelet (HALP) score and lymphocyte-to-monocyte ratio (LMR) in patients with non-small cell lung cancer after radical lung cancer surgery.

  • Baoqian Zhai‎ et al.
  • Annals of translational medicine‎
  • 2021‎

Examining the analytical worth of the preoperative hemoglobin, albumin, lymphocyte, platelet (HALP) score and lymphocyte-to-monocyte ratio (LMR) within diseased persons having non-small cell lung cancer (NSCLC) after radical lung cancer surgery.


Schistosoma japonicum Infection Leads to the Reprogramming of Glucose and Lipid Metabolism in the Colon of Mice.

  • Xiaoying Yang‎ et al.
  • Frontiers in veterinary science‎
  • 2021‎

The deposition of Schistosoma japonicum (S. japonicum) eggs commonly induces inflammation, fibrosis, hyperplasia, ulceration, and polyposis in the colon, which poses a serious threat to human health. However, the underlying mechanism is largely neglected. Recently, the disorder of glucose and lipid metabolism was reported to participate in the liver fibrosis induced by the parasite, which provides a novel clue for studying the underlying mechanism of the intestinal pathology of the disease. This study focused on the metabolic reprogramming profiles of glucose and lipid in the colon of mice infected by S. japonicum. We found that S. japonicum infection shortened the colonic length, impaired intestinal integrity, induced egg-granuloma formation, and increased colonic inflammation. The expression of key enzymes involved in the pathways regulating glucose and lipid metabolism was upregulated in the colon of infected mice. Conversely, phosphatase and tensin homolog deleted on chromosome ten (PTEN) and its downstream signaling targets were significantly inhibited after infection. In line with these results, in vitro stimulation with soluble egg antigens (SEA) downregulated the expression of PTEN in CT-26 cells and induced metabolic alterations similar to that observed under in vivo results. Moreover, PTEN over-expression prevented the reprogramming of glucose and lipid metabolism induced by SEA in CT-26 cells. Overall, the present study showed that S. japonicum infection induces the reprogramming of glucose and lipid metabolism in the colon of mice, and PTEN may play a vital role in mediating this metabolic reprogramming. These findings provide a novel insight into the pathogenicity of S. japonicum in hosts.


Global Insights Into Lysine Acylomes Reveal Crosstalk Between Lysine Acetylation and Succinylation in Streptomyces coelicolor Metabolic Pathways.

  • Yujiao Yang‎ et al.
  • Molecular & cellular proteomics : MCP‎
  • 2021‎

Lysine acylations are reversible and ubiquitous post-translational modifications that play critical roles in regulating multiple cellular processes. In the current study, highly abundant and dynamic acetylation, besides succinylation, was uncovered in a soil bacterium, Streptomyces coelicolor. By affinity enrichment using anti-acetyl-lysine antibody and the following LC-MS/MS analysis, a total of 1298 acetylation sites among 601 proteins were identified. Bioinformatics analyses suggested that these acetylated proteins have diverse subcellular localization and were enriched in a wide range of biological functions. Specifically, a majority of the acetylated proteins were also succinylated in the tricarboxylic acid cycle and protein translation pathways, and the bimodification occurred at the same sites in some proteins. The acetylation and succinylation sites were quantified by knocking out either the deacetylase ScCobB1 or the desuccinylase ScCobB2, demonstrating a possible competitive relationship between the two acylations. Moreover, in vitro experiments using synthetically modified peptides confirmed the regulatory crosstalk between the two sirtuins, which may be involved in the collaborative regulation of cell physiology. Collectively, these results provided global insights into the S. coelicolor acylomes and laid a foundation for characterizing the regulatory roles of the crosstalk between lysine acetylation and succinylation in the future.


Chromatin remodeler ARID1A binds IRF3 to selectively induce antiviral interferon production in macrophages.

  • Ye Hu‎ et al.
  • Cell death & disease‎
  • 2021‎

Transcription factor IRF3 is critical for the induction of antiviral type I interferon (IFN-I). The epigenetic regulation of IFN-I production in antiviral innate immunity needs to be further identified. Here, we reported that epigenetic remodeler ARID1A, a critical component of the mSWI/SNF complex, could bind IRF3 and then was recruited to the Ifn-I promoter by IRF3, thus selectively promoting IFN-I but not TNF-α, IL-6 production in macrophages upon viral infection. Myeloid cell-specific deficiency of Arid1a rendered mice more susceptible to viral infection, accompanied with less IFN-I production. Mechanistically, ARID1A facilitates chromatin accessibility of IRF3 at the Ifn-I promoters by interacting with histone methyltransferase NSD2, which methylates H3K4 and H3K36 of the promoter regions. Our findings demonstrated the new roles of ARID1A and NSD2 in innate immunity, providing insight into the crosstalks of chromatin remodeling, histone modification, and transcription factors in the epigenetic regulation of antiviral innate immunity.


Upregulation of hsa_circ_0000977 participates in esophageal squamous cancer progression by sponging miR-874-3p.

  • Ni Li‎ et al.
  • Journal of clinical laboratory analysis‎
  • 2022‎

Esophageal squamous cell carcinoma (ESCC) is one of the most common clinical malignancies of the digestive system, characterized by high mortality but not evident early symptoms. Molecular markers for diagnostic and outcome prediction are urgently needed. Circular RNAs might play essential roles in the progression of ESCC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: