Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Genomic and functional overlap between somatic and germline chromosomal rearrangements.

  • Sebastiaan van Heesch‎ et al.
  • Cell reports‎
  • 2014‎

Genomic rearrangements are a common cause of human congenital abnormalities. However, their origin and consequences are poorly understood. We performed molecular analysis of two patients with congenital disease who carried de novo genomic rearrangements. We found that the rearrangements in both patients hit genes that are recurrently rearranged in cancer (ETV1, FOXP1, and microRNA cluster C19MC) and drive formation of fusion genes similar to those described in cancer. Subsequent analysis of a large set of 552 de novo germline genomic rearrangements underlying congenital disorders revealed enrichment for genes rearranged in cancer and overlap with somatic cancer breakpoints. Breakpoints of common (inherited) germline structural variations also overlap with cancer breakpoints but are depleted for cancer genes. We propose that the same genomic positions are prone to genomic rearrangements in germline and soma but that timing and context of breakage determines whether developmental defects or cancer are promoted.


Exploring the human lacrimal gland using organoids and single-cell sequencing.

  • Marie Bannier-Hélaouët‎ et al.
  • Cell stem cell‎
  • 2021‎

The lacrimal gland is essential for lubrication and protection of the eye. Disruption of lacrimal fluid production, composition, or release results in dry eye, causing discomfort and damage to the ocular surface. Here, we describe the establishment of long-term 3D organoid culture conditions for mouse and human lacrimal gland. Organoids can be expanded over multiple months and recapitulate morphological and transcriptional features of lacrimal ducts. CRISPR-Cas9-mediated genome editing reveals the master regulator for eye development Pax6 to be required for differentiation of adult lacrimal gland cells. We address cellular heterogeneity of the lacrimal gland by providing a single-cell atlas of human lacrimal gland tissue and organoids. Finally, human lacrimal gland organoids phenocopy the process of tear secretion in response to neurotransmitters and can engraft and produce mature tear products upon orthotopic transplantation in mouse. Together, this study provides an experimental platform to study the (patho-)physiology of the lacrimal gland.


Modelling of primary ciliary dyskinesia using patient-derived airway organoids.

  • Jelte van der Vaart‎ et al.
  • EMBO reports‎
  • 2021‎

Patient-derived human organoids can be used to model a variety of diseases. Recently, we described conditions for long-term expansion of human airway organoids (AOs) directly from healthy individuals and patients. Here, we first optimize differentiation of AOs towards ciliated cells. After differentiation of the AOs towards ciliated cells, these can be studied for weeks. When returned to expansion conditions, the organoids readily resume their growth. We apply this condition to AOs established from nasal inferior turbinate brush samples of patients suffering from primary ciliary dyskinesia (PCD), a pulmonary disease caused by dysfunction of the motile cilia in the airways. Patient-specific differences in ciliary beating are observed and are in agreement with the patients' genetic mutations. More detailed organoid ciliary phenotypes can thus be documented in addition to the standard diagnostic procedure. Additionally, using genetic editing tools, we show that a patient-specific mutation can be repaired. This study demonstrates the utility of organoid technology for investigating hereditary airway diseases such as PCD.


Patient-derived organoids model cervical tissue dynamics and viral oncogenesis in cervical cancer.

  • Kadi Lõhmussaar‎ et al.
  • Cell stem cell‎
  • 2021‎

Cervical cancer is a common gynecological malignancy often caused by high-risk human papillomavirus. There is a paucity of human-derived culture systems to study the cervical epithelium and the cancers derived thereof. Here we describe a long-term culturing protocol for ecto- and endocervical epithelia that generates 3D organoids that stably recapitulate the two tissues of origin. As evidenced for HSV-1, organoid-based cervical models may serve to study sexually transmitted infections. Starting from Pap brush material, a small biobank of tumoroids derived from affected individuals was established that retained the causative human papillomavirus (HPV) genomes. One of these uniquely carried the poorly characterized HPV30 subtype, implying a potential role in carcinogenesis. The tumoroids displayed differential responses to common chemotherapeutic agents and grew as xenografts in mice. This study describes an experimental platform for cervical (cancer) research and for future personalized medicine approaches.


Druggable growth dependencies and tumor evolution analysis in patient-derived organoids of neuroendocrine neoplasms from multiple body sites.

  • Talya L Dayton‎ et al.
  • Cancer cell‎
  • 2023‎

Neuroendocrine neoplasms (NENs) comprise well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Treatment options for patients with NENs are limited, in part due to lack of accurate models. We establish patient-derived tumor organoids (PDTOs) from pulmonary NETs and derive PDTOs from an understudied subtype of NEC, large cell neuroendocrine carcinoma (LCNEC), arising from multiple body sites. PDTOs maintain the gene expression patterns, intra-tumoral heterogeneity, and evolutionary processes of parental tumors. Through hypothesis-driven drug sensitivity analyses, we identify ASCL1 as a potential biomarker for response of LCNEC to treatment with BCL-2 inhibitors. Additionally, we discover a dependency on EGF in pulmonary NET PDTOs. Consistent with these findings, we find that, in an independent cohort, approximately 50% of pulmonary NETs express EGFR. This study identifies an actionable vulnerability for a subset of pulmonary NETs, emphasizing the utility of these PDTO models.


Long-term expanding human airway organoids for disease modeling.

  • Norman Sachs‎ et al.
  • The EMBO journal‎
  • 2019‎

Organoids are self-organizing 3D structures grown from stem cells that recapitulate essential aspects of organ structure and function. Here, we describe a method to establish long-term-expanding human airway organoids from broncho-alveolar resections or lavage material. The pseudostratified airway organoids consist of basal cells, functional multi-ciliated cells, mucus-producing secretory cells, and CC10-secreting club cells. Airway organoids derived from cystic fibrosis (CF) patients allow assessment of CFTR function in an organoid swelling assay. Organoids established from lung cancer resections and metastasis biopsies retain tumor histopathology as well as cancer gene mutations and are amenable to drug screening. Respiratory syncytial virus (RSV) infection recapitulates central disease features, dramatically increases organoid cell motility via the non-structural viral NS2 protein, and preferentially recruits neutrophils upon co-culturing. We conclude that human airway organoids represent versatile models for the in vitro study of hereditary, malignant, and infectious pulmonary disease.


Mapping early fate determination in Lgr5+ crypt stem cells using a novel Ki67-RFP allele.

  • Onur Basak‎ et al.
  • The EMBO journal‎
  • 2014‎

Cycling Lgr5+ stem cells fuel the rapid turnover of the adult intestinal epithelium. The existence of quiescent Lgr5+ cells has been reported, while an alternative quiescent stem cell population is believed to reside at crypt position +4. Here, we generated a novel Ki67RFP knock-in allele that identifies dividing cells. Using Lgr5-GFP;Ki67RFP mice, we isolated crypt stem and progenitor cells with distinct Wnt signaling levels and cell cycle features and generated their molecular signature using microarrays. Stem cell potential of these populations was further characterized using the intestinal organoid culture. We found that Lgr5high stem cells are continuously in cell cycle, while a fraction of Lgr5low progenitors that reside predominantly at +4 position exit the cell cycle. Unlike fast dividing CBCs, Lgr5low Ki67- cells have lost their ability to initiate organoid cultures, are enriched in secretory differentiation factors, and resemble the Dll1 secretory precursors and the label-retaining cells of Winton and colleagues. Our findings support the cycling stem cell hypothesis and highlight the cell cycle heterogeneity of early progenitors during lineage commitment.


Adult mouse and human organoids derived from thyroid follicular cells and modeling of Graves' hyperthyroidism.

  • Jelte van der Vaart‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

The thyroid maintains systemic homeostasis by regulating serum thyroid hormone concentrations. Here we report the establishment of three-dimensional (3D) organoids from adult thyroid tissue representing murine and human thyroid follicular cells (TFCs). The TFC organoids (TFCOs) harbor the complete machinery of hormone production as visualized by the presence of colloid in the lumen and by the presence of essential transporters and enzymes in the polarized epithelial cells that surround a central lumen. Both the established murine as human thyroid organoids express canonical thyroid markers PAX8 and NKX2.1, while the thyroid hormone precursor thyroglobulin is expressed at comparable levels to tissue. Single-cell RNA sequencing and transmission electron microscopy confirm that TFCOs phenocopy primary thyroid tissue. Thyroid hormones are readily detectable in conditioned medium of human TFCOs. We show clinically relevant responses (increased proliferation and hormone secretion) of human TFCOs toward a panel of Graves' disease patient sera, demonstrating that organoids can model human autoimmune disease.


LGR6 marks nephron progenitor cells.

  • Ravian L van Ineveld‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2021‎

Nephron progenitor cells (NPCs) undergo a stepwise process to generate all mature nephron structures. Mesenchymal to epithelial transition (MET) is considered a multistep process of NPC differentiation to ensure progressive establishment of new nephrons. However, despite this important role, to date, no marker for NPCs undergoing MET in the nephron exists.


Long-Term Expansion of Functional Mouse and Human Hepatocytes as 3D Organoids.

  • Huili Hu‎ et al.
  • Cell‎
  • 2018‎

The mammalian liver possesses a remarkable regenerative ability. Two modes of damage response have been described: (1) The "oval cell" response emanates from the biliary tree when all hepatocytes are affected by chronic liver disease. (2) A massive, proliferative response of mature hepatocytes occurs upon acute liver damage such as partial hepatectomy (PHx). While the oval cell response has been captured in vitro by growing organoids from cholangiocytes, the hepatocyte proliferative response has not been recapitulated in culture. Here, we describe the establishment of a long-term 3D organoid culture system for mouse and human primary hepatocytes. Organoids can be established from single hepatocytes and grown for multiple months, while retaining key morphological, functional and gene expression features. Transcriptional profiles of the organoids resemble those of proliferating hepatocytes after PHx. Human hepatocyte organoids proliferate extensively after engraftment into mice and thus recapitulate the proliferative damage-response of hepatocytes.


The leukemia-associated Mllt10/Af10-Dot1l are Tcf4/β-catenin coactivators essential for intestinal homeostasis.

  • Tokameh Mahmoudi‎ et al.
  • PLoS biology‎
  • 2010‎

Wnt signaling maintains the undifferentiated state of intestinal crypt progenitor cells by inducing the formation of nuclear TCF4/β-catenin complexes. In colorectal cancer, activating mutations in Wnt pathway components cause inappropriate activation of TCF4/β-catenin-driven transcription. Despite the passage of a decade after the discovery of TCF4 and β-catenin as the molecular effectors of the Wnt signal, few transcriptional activators essential and unique to the regulation of this transcription program have been found. Using proteomics, we identified the leukemia-associated Mllt10/Af10 and the methyltransferase Dot1l as Tcf4/β-catenin interactors in mouse small intestinal crypts. Mllt10/Af10-Dot1l, essential for transcription elongation, are recruited to Wnt target genes in a β-catenin-dependent manner, resulting in H3K79 methylation over their coding regions in vivo in proliferative crypts of mouse small intestine in colorectal cancer and Wnt-inducible HEK293T cells. Depletion of MLLT10/AF10 in colorectal cancer and Wnt-inducible HEK293T cells followed by expression array analysis identifies MLLT10/AF10 and DOT1L as essential activators to a large extent dedicated to Wnt target gene regulation. In contrast, previously published β-catenin coactivators p300 and BRG1 displayed a more pleiotropic target gene expression profile controlling Wnt and other pathways. tcf4, mllt10/af10, and dot1l are co-expressed in Wnt-driven tissues in zebrafish and essential for Wnt-reporter activity. Intestinal differentiation defects in apc-mutant zebrafish can be rescued by depletion of Mllt10 and Dot1l, establishing these genes as activators downstream of Apc in Wnt target gene activation in vivo. Morpholino-depletion of mllt10/af10-dot1l in zebrafish results in defects in intestinal homeostasis and a significant reduction in the in vivo expression of direct Wnt target genes and in the number of proliferative intestinal epithelial cells. We conclude that Mllt10/Af10-Dot1l are essential, largely dedicated activators of Wnt-dependent transcription, critical for maintenance of intestinal proliferation and homeostasis. The methyltransferase DOT1L may present an attractive candidate for drug targeting in colorectal cancer.


A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity.

  • Norman Sachs‎ et al.
  • Cell‎
  • 2018‎

Breast cancer (BC) comprises multiple distinct subtypes that differ genetically, pathologically, and clinically. Here, we describe a robust protocol for long-term culturing of human mammary epithelial organoids. Using this protocol, >100 primary and metastatic BC organoid lines were generated, broadly recapitulating the diversity of the disease. BC organoid morphologies typically matched the histopathology, hormone receptor status, and HER2 status of the original tumor. DNA copy number variations as well as sequence changes were consistent within tumor-organoid pairs and largely retained even after extended passaging. BC organoids furthermore populated all major gene-expression-based classification groups and allowed in vitro drug screens that were consistent with in vivo xeno-transplantations and patient response. This study describes a representative collection of well-characterized BC organoids available for cancer research and drug development, as well as a strategy to assess in vitro drug response in a personalized fashion.


Replacement of Lost Lgr5-Positive Stem Cells through Plasticity of Their Enterocyte-Lineage Daughters.

  • Paul W Tetteh‎ et al.
  • Cell stem cell‎
  • 2016‎

Intestinal crypts display robust regeneration upon injury. The relatively rare secretory precursors can replace lost stem cells, but it is unknown if the abundant enterocyte progenitors that express the Alkaline phosphate intestinal (Alpi) gene also have this capacity. We created an Alpi-IRES-CreERT2 (Alpi(CreER)) knockin allele for lineage tracing. Marked clones consist entirely of enterocytes and are all lost from villus tips within days. Genetic fate-mapping of Alpi(+) cells before or during targeted ablation of Lgr5-expressing stem cells generated numerous long-lived crypt-villus "ribbons," indicative of dedifferentiation of enterocyte precursors into Lgr5(+) stems. By single-cell analysis of dedifferentiating enterocytes, we observed the generation of Paneth-like cells and proliferative stem cells. We conclude that the highly proliferative, short-lived enterocyte precursors serve as a large reservoir of potential stem cells during crypt regeneration.


T-cell factor 4 (Tcf7l2) maintains proliferative compartments in zebrafish intestine.

  • Vanesa Muncan‎ et al.
  • EMBO reports‎
  • 2007‎

Previous studies have shown that Wnt signals, relayed through beta-catenin and T-cell factor 4 (Tcf4), are essential for the induction and maintenance of crypts in mice. We have now generated a tcf4 (tcf7l2) mutant zebrafish by reverse genetics. We first observe a phenotypic defect at 4 weeks post-fertilization (wpf), leading to death at about 6 wpf. The phenotype comprises a loss of proliferation at the base of the intestinal folds of the middle and distal parts of the intestine. The proximal intestine represents an independent compartment, as it expresses sox2 in the epithelium and barx1 in the surrounding mesenchyme, which are early stomach markers in higher vertebrates. Zebrafish are functionally stomach-less, but the proximal intestine might share its ontogeny with the mammalian stomach. Rare adult homozygous tcf4(-/-) 'escapers' show proliferation defects in the gut epithelium, but have no other obvious abnormalities. This study underscores the involvement of Tcf4 in maintaining proliferative self-renewal in the intestine throughout life.


Snake Venom Gland Organoids.

  • Yorick Post‎ et al.
  • Cell‎
  • 2020‎

Wnt dependency and Lgr5 expression define multiple mammalian epithelial stem cell types. Under defined growth factor conditions, such adult stem cells (ASCs) grow as 3D organoids that recapitulate essential features of the pertinent epithelium. Here, we establish long-term expanding venom gland organoids from several snake species. The newly assembled transcriptome of the Cape coral snake reveals that organoids express high levels of toxin transcripts. Single-cell RNA sequencing of both organoids and primary tissue identifies distinct venom-expressing cell types as well as proliferative cells expressing homologs of known mammalian stem cell markers. A hard-wired regional heterogeneity in the expression of individual venom components is maintained in organoid cultures. Harvested venom peptides reflect crude venom composition and display biological activity. This study extends organoid technology to reptilian tissues and describes an experimentally tractable model system representing the snake venom gland.


ENDOGLIN is dispensable for vasculogenesis, but required for vascular endothelial growth factor-induced angiogenesis.

  • Zhen Liu‎ et al.
  • PloS one‎
  • 2014‎

ENDOGLIN (ENG) is a co-receptor for transforming growth factor-β (TGF-β) family members that is highly expressed in endothelial cells and has a critical function in the development of the vascular system. Mutations in Eng are associated with the vascular disease known as hereditary hemorrhagic telangiectasia type l. Using mouse embryonic stem cells we observed that angiogenic factors, including vascular endothelial growth factor (VEGF), induce vasculogenesis in embryoid bodies even when Eng deficient cells or cells depleted of Eng using shRNA are used. However, ENG is required for the stem cell-derived endothelial cells to organize effectively into tubular structures. Consistent with this finding, fetal metatarsals isolated from E17.5 Eng heterozygous mouse embryos showed reduced VEGF-induced vascular network formation. Moreover, shRNA-mediated depletion and pharmacological inhibition of ENG in human umbilical vein cells mitigated VEGF-induced angiogenesis. In summary, we demonstrate that ENG is required for efficient VEGF-induced angiogenesis.


Assessing the origin of high-grade serous ovarian cancer using CRISPR-modification of mouse organoids.

  • Kadi Lõhmussaar‎ et al.
  • Nature communications‎
  • 2020‎

High-grade serous ovarian cancer (HG-SOC)-often referred to as a "silent killer"-is the most lethal gynecological malignancy. The fallopian tube (murine oviduct) and ovarian surface epithelium (OSE) are considered the main candidate tissues of origin of this cancer. However, the relative contribution of each tissue to HG-SOC is not yet clear. Here, we establish organoid-based tumor progression models of HG-SOC from murine oviductal and OSE tissues. We use CRISPR-Cas9 genome editing to introduce mutations into genes commonly found mutated in HG-SOC, such as Trp53, Brca1, Nf1 and Pten. Our results support the dual origin hypothesis of HG-SOC, as we demonstrate that both epithelia can give rise to ovarian tumors with high-grade pathology. However, the mutated oviductal organoids expand much faster in vitro and more readily form malignant tumors upon transplantation. Furthermore, in vitro drug testing reveals distinct lineage-dependent sensitivities to the common drugs used to treat HG-SOC in patients.


Epiblast inducers capture mouse trophectoderm stem cells in vitro and pattern blastoids for implantation in utero.

  • Jinwoo Seong‎ et al.
  • Cell stem cell‎
  • 2022‎

The embryo instructs the allocation of cell states to spatially regulate functions. In the blastocyst, patterning of trophoblast (TR) cells ensures successful implantation and placental development. Here, we defined an optimal set of molecules secreted by the epiblast (inducers) that captures in vitro stable, highly self-renewing mouse trophectoderm stem cells (TESCs) resembling the blastocyst stage. When exposed to suboptimal inducers, these stem cells fluctuate to form interconvertible subpopulations with reduced self-renewal and facilitated differentiation, resembling peri-implantation cells, known as TR stem cells (TSCs). TESCs have enhanced capacity to form blastoids that implant more efficiently in utero due to inducers maintaining not only local TR proliferation and self-renewal, but also WNT6/7B secretion that stimulates uterine decidualization. Overall, the epiblast maintains sustained growth and decidualization potential of abutting TR cells, while, as known, distancing imposed by the blastocyst cavity differentiates TR cells for uterus adhesion, thus patterning the essential functions of implantation.


Human conjunctiva organoids to study ocular surface homeostasis and disease.

  • Marie Bannier-Hélaouët‎ et al.
  • Cell stem cell‎
  • 2024‎

The conjunctival epithelium covering the eye contains two main cell types: mucus-producing goblet cells and water-secreting keratinocytes, which present mucins on their apical surface. Here, we describe long-term expanding organoids and air-liquid interface representing mouse and human conjunctiva. A single-cell RNA expression atlas of primary and cultured human conjunctiva reveals that keratinocytes express multiple antimicrobial peptides and identifies conjunctival tuft cells. IL-4/-13 exposure increases goblet and tuft cell differentiation and drastically modifies the conjunctiva secretome. Human NGFR+ basal cells are identified as bipotent conjunctiva stem cells. Conjunctival cultures can be infected by herpes simplex virus 1 (HSV1), human adenovirus 8 (hAdV8), and SARS-CoV-2. HSV1 infection was reversed by acyclovir addition, whereas hAdV8 infection, which lacks an approved drug therapy, was inhibited by cidofovir. We document transcriptional programs induced by HSV1 and hAdV8. Finally, conjunctival organoids can be transplanted. Together, human conjunctiva organoid cultures enable the study of conjunctival (patho)-physiology.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: