Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Atoh1 is required in supporting cells for regeneration of vestibular hair cells in adult mice.

  • Kelli L Hicks‎ et al.
  • Hearing research‎
  • 2020‎

In amniotes, head movements are encoded by two types of vestibular hair cells (type I and type II) with unique morphology, physiology, and innervation. After hair cell destruction in mature rodents, supporting cells regenerate some type II hair cells, but no type I hair cells are replaced. The transcription factor Atoh1 is required for hair cell development, and Atoh1 is upregulated in supporting cells, the hair cell progenitors, in mature chickens and mice following hair cell damage. We investigated whether Atoh1 is required for type II hair cell regeneration in adult mice after genetic ablation of hair cells. First, we used a knock-in Atoh1 reporter to demonstrate that supporting cells in the utricle, a vestibular organ that detects linear acceleration of the head, upregulate Atoh1 expression by 7 days after hair cell destruction was initiated. Next, we labeled supporting cells prior to damage and fate-mapped them over time to test whether conditional deletion of Atoh1 from supporting cells prevented them from converting into hair cells after damage. In mice with normal Atoh1 expression, fate-mapped supporting cells in the adult utricle gave rise to hundreds of type II hair cells after hair cell destruction, but they did not form new type I hair cells. By contrast, mice with Atoh1 deletion prior to hair cell damage had only 10-20 fate-mapped type II hair cells per utricle at 3 weeks post-damage, and numbers did not change at 12 weeks after hair cell destruction. Supporting cells had normal cell shape and nuclear density up to 12 weeks after Atoh1 deletion. Similar observations were made in two other vestibular organs, the saccule and the lateral ampulla. Our findings demonstrate that Atoh1 is necessary in adult mouse supporting cells for regeneration of type II vestibular hair cells and that deletion of Atoh1 from supporting cells prior to damage does not appear to induce supporting cells to die or to proliferate.


Vascular endothelial growth factor is required for regeneration of auditory hair cells in the avian inner ear.

  • Liangcai Wan‎ et al.
  • Hearing research‎
  • 2020‎

Hair cells in the auditory organ of the vertebrate inner ear are the sensory receptors that convert acoustic stimuli into electrical signals that are conveyed along the auditory nerve to the brainstem. Hair cells are highly susceptible to ototoxic drugs, infection, and acoustic trauma, which can cause cellular degeneration. In mammals, hair cells that are lost after damage are not replaced, leading to permanent hearing impairments. By contrast, supporting cells in birds and other non-mammalian vertebrates regenerate hair cells after damage, which restores hearing function. The cellular mechanisms that regulate hair cell regeneration are not well understood. We investigated the role of vascular endothelial growth factor (VEGF) during regeneration of auditory hair cells in chickens after ototoxic injury. Using RNA-Seq, immunolabeling, and in situ hybridization, we found that VEGFA, VEGFC, VEGFR1, VEGFR2, and VEGFR3 were expressed in the auditory epithelium, with VEGFA expressed in hair cells and VEGFR1 and VEGFR2 expressed in supporting cells. Using organotypic cultures of the chicken cochlear duct, we found that blocking VEGF receptor activity during hair cell injury reduced supporting cell proliferation as well as the numbers of regenerated hair cells. By contrast, addition of recombinant human VEGFA to organ cultures caused an increase in both supporting cell division and hair cell regeneration. VEGF's effects on supporting cells were preserved in isolated supporting cell cultures, indicating that VEGF can act directly upon supporting cells. These observations demonstrate a heretofore uncharacterized function for VEGF signaling as a critical positive regulator of hair cell regeneration in the avian inner ear.


Expression of Prox1 during mouse cochlear development.

  • Olivia Bermingham-McDonogh‎ et al.
  • The Journal of comparative neurology‎
  • 2006‎

We carried out an analysis of the expression of Prox1, a homeo-domain transcription factor, during mouse inner ear development with particular emphasis on the auditory system. Prox1 is expressed in the otocyst beginning at embryonic day (E)11, in the developing vestibular sensory patches. Expression is down regulated in maturing (myosin VIIA immunoreactive) vestibular hair cells and subsequently in the underlying support cell layer by E16.5. In the auditory sensory epithelium, Prox1 is initially expressed at embryonic day 14.5 in a narrow stripe of cells at the base of the cochlea. This stripe encompasses the full thickness of the sensory epithelium, including developing hair cells and support cells. Over the next several days the stripe of expression extends to the apex, and as the sensory epithelium differentiates Prox1 becomes restricted to a subset of support cells. Double labeling for Prox1 and cell-type-specific markers revealed that the outer hair cells transiently express Prox1. After E18, Prox1 protein is no longer detectable in hair cells, but it continues to be expressed in support cells for the rest of embryogenesis and into the second postnatal week. During this time, Prox1 is not expressed in all support cell types in the organ of Corti, but is restricted to developing Deiters' and pillar cells. The expression is maintained in these cells into the second week of postnatal life, at which time Prox1 is dynamically down regulated. These studies form a baseline from which we can analyze the role of Prox1 in vertebrate sensory development.


The Differentiation Status of Hair Cells That Regenerate Naturally in the Vestibular Inner Ear of the Adult Mouse.

  • Antonia González-Garrido‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2021‎

Aging, disease, and trauma can lead to loss of vestibular hair cells and permanent vestibular dysfunction. Previous work showed that, following acute destruction of ∼95% of vestibular hair cells in adult mice, ∼20% regenerate naturally (without exogenous factors) through supporting cell transdifferentiation. There is, however, no evidence for the recovery of vestibular function. To gain insight into the lack of functional recovery, we assessed functional differentiation in regenerated hair cells for up to 15 months, focusing on key stages in stimulus transduction and transmission: hair bundles, voltage-gated conductances, and synaptic contacts. Regenerated hair cells had many features of mature type II vestibular hair cells, including polarized mechanosensitive hair bundles with zone-appropriate stereocilia heights, large voltage-gated potassium currents, basolateral processes, and afferent and efferent synapses. Regeneration failed, however, to recapture the full range of properties of normal populations, and many regenerated hair cells had some properties of immature hair cells, including small transduction currents, voltage-gated sodium currents, and small or absent HCN (hyperpolarization-activated cyclic nucleotide-gated) currents. Furthermore, although mouse vestibular epithelia normally have slightly more type I hair cells than type II hair cells, regenerated hair cells acquired neither the low-voltage-activated potassium channels nor the afferent synaptic calyces that distinguish mature type I hair cells from type II hair cells and confer distinctive physiology. Thus, natural regeneration of vestibular hair cells in adult mice is limited in total cell number, cell type diversity, and extent of cellular differentiation, suggesting that manipulations are needed to promote full regeneration with the potential for recovery of vestibular function.SIGNIFICANCE STATEMENT Death of inner ear hair cells in adult mammals causes permanent loss of hearing and balance. In adult mice, the sudden death of most vestibular hair cells stimulates the production of new hair cells but does not restore balance. We investigated whether the lack of systems-level function reflects functional deficiencies in the regenerated hair cells. The regenerated population acquired mechanosensitivity, voltage-gated channels, and afferent synapses, but did not reproduce the full range of hair cell types. Notably, no regenerated cells acquired the distinctive properties of type I hair cells, a major functional class in amniote vestibular organs. To recover vestibular system function in adults, we may need to solve how to regenerate the normal variety of mature hair cells.


The transcription factor Sox2 is required to maintain the cell type-specific properties and innervation of type II vestibular hair cells in adult mice.

  • Jennifer S Stone‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2021‎

The sense of balance relies on vestibular hair cells, which detect head motions. Mammals have two types of vestibular hair cell, I and II, with unique morphological, molecular, and physiological properties. Furthermore, each hair cell type synapses on a unique form of afferent nerve terminal. Little is known about the mechanisms in mature animals that maintain the specific features of each hair cell type or its post-synaptic innervation. We found that deletion of the transcription factor Sox2 from type II hair cells in adult mice of both sexes caused many cells in utricles to acquire features unique to type I hair cells and to lose type II-specific features. This cellular transdifferentiation, which included changes in nuclear size, chromatin condensation, soma and stereocilium morphology, and marker expression, resulted in a significantly higher proportion of type I-like hair cells in all epithelial zones. Furthermore, Sox2 deletion from type II hair cells triggered non-cell autonomous changes in vestibular afferent neurons; they retracted bouton terminals (normally present on only type II cells) from transdifferentiating hair cells and replaced them with a calyx terminal (normally present on only type I cells). These changes were accompanied by significant expansion of the utricle's central zone, called the striola. Our study presents the first example of a transcription factor required to maintain the type-specific hair cell phenotype in adult inner ears. Furthermore, we demonstrate that a single genetic change in type II hair cells is sufficient to alter the morphology of their post-synaptic partners, the vestibular afferent neurons.SIGNIFICANCE STATEMENT:The sense of balance relies on two types of sensory cells in the inner ear - type I and type II hair cells. These two cell types have unique properties. Furthermore, their post-synaptic partners, the vestibular afferent neurons, have differently shaped terminals on type I versus type II hair cells. We show that the transcription factor Sox2 is required to maintain the cell-specific features of type II hair cells and their post-synaptic terminals in adult mice. This is the first evidence of a molecule that maintains the phenotypes of hair cells and, non-cell autonomously, their post-synaptic partners in mature animals.


Bone morphogenetic protein 4 antagonizes hair cell regeneration in the avian auditory epithelium.

  • Rebecca M Lewis‎ et al.
  • Hearing research‎
  • 2018‎

Permanent hearing loss is often a result of damage to cochlear hair cells, which mammals are unable to regenerate. Non-mammalian vertebrates such as birds replace damaged hair cells and restore hearing function, but mechanisms controlling regeneration are not understood. The secreted protein bone morphogenetic protein 4 (BMP4) regulates inner ear morphogenesis and hair cell development. To investigate mechanisms controlling hair cell regeneration in birds, we examined expression and function of BMP4 in the auditory epithelia (basilar papillae) of chickens of either sex after hair cell destruction by ototoxic antibiotics. In mature basilar papillae, BMP4 mRNA is highly expressed in hair cells, but not in hair cell progenitors (supporting cells). Supporting cells transcribe genes encoding receptors for BMP4 (BMPR1A, BMPR1B, and BMPR2) and effectors of BMP4 signaling (ID transcription factors). Following hair cell destruction, BMP4 transcripts are lost from the sensory epithelium. Using organotypic cultures, we demonstrate that treatments with BMP4 during hair cell destruction prevent supporting cells from upregulating expression of the pro-hair cell transcription factor ATOH1, entering the cell cycle, and fully transdifferentiating into hair cells, but they do not induce cell death. By contrast, noggin, a BMP4 inhibitor, increases numbers of regenerated hair cells. These findings demonstrate that BMP4 antagonizes hair cell regeneration in the chicken basilar papilla, at least in part by preventing accumulation of ATOH1 in hair cell precursors.


EGFR signaling is required for regenerative proliferation in the cochlea: conservation in birds and mammals.

  • Patricia M White‎ et al.
  • Developmental biology‎
  • 2012‎

Proliferation and transdifferentiaton of supporting cells in the damaged auditory organ of birds lead to robust regeneration of sensory hair cells. In contrast, regeneration of lost auditory hair cells does not occur in deafened mammals, resulting in permanent hearing loss. In spite of this failure of regeneration in mammals, we have previously shown that the perinatal mouse supporting cells harbor a latent potential for cell division. Here we show that in a subset of supporting cells marked by p75, EGFR signaling is required for proliferation, and this requirement is conserved between birds and mammals. Purified p75+ mouse supporting cells express receptors and ligands for the EGF signaling pathway, and their proliferation in culture can be blocked with the EGFR inhibitor AG1478. Similarly, in cultured chicken basilar papillae, supporting cell proliferation in response to hair cell ablation requires EGFR signaling. In addition, we show that EGFR signaling in p75+ mouse supporting cells is required for the down-regulation of the cell cycle inhibitor p27(Kip1) (CDKN1b) to enable cell cycle re-entry. Taken together, our data suggest that a conserved mechanism involving EGFR signaling governs proliferation of auditory supporting cells in birds and mammals and may represent a target for future hair cell regeneration strategies.


Characterization of Adult Vestibular Organs in 11 CreER Mouse Lines.

  • Jennifer S Stone‎ et al.
  • Journal of the Association for Research in Otolaryngology : JARO‎
  • 2018‎

Utricles are vestibular sense organs that encode linear head movements. They are composed of a sensory epithelium with type I and type II hair cells and supporting cells, sitting atop connective tissue, through which vestibular nerves project. We characterized utricular Cre expression in 11 murine CreER lines using the ROSA26tdTomato reporter line and tamoxifen induction at 6 weeks of age. This characterization included Calbindin2CreERT2, Fgfr3-iCreERT2, GFAP-A-CreER™, GFAP-B-CreER™, GLAST-CreERT2, Id2CreERT2, OtoferlinCreERT2, ParvalbuminCreERT2, Prox1CreERT2, Sox2CreERT2, and Sox9-CreERT2. OtoferlinCreERT2 mice had inducible Cre activity specific to hair cells. GLAST-CreERT2, Id2CreERT2, and Sox9-CreERT2 had inducible Cre activity specific to supporting cells. Sox2CreERT2 had inducible Cre activity in supporting cells and most type II hair cells. ParvalbuminCreERT2 mice had small numbers of labeled vestibular nerve afferents. Calbindin2CreERT2 mice had labeling of most type II hair cells and some type I hair cells and supporting cells. Only rare (or no) tdTomato-positive cells were detected in utricles of Fgfr3-iCreERT2, GFAP-A-CreER™, GFAP-B-CreER™, and Prox1CreERT2 mice. No Cre leakiness (tdTomato expression in the absence of tamoxifen) was observed in OtoferlinCreERT2 mice. A small degree of leakiness was seen in GLAST-CreERT2, Id2CreERT2, Sox2CreERT2, and Sox9-CreERT2 lines. Calbindin2CreERT2 mice had similar tdTomato expression with or without tamoxifen, indicating lack of inducible control under the conditions tested. In conclusion, 5 lines-GLAST-CreERT2, Id2CreERT2, OtoferlinCreERT2, Sox2CreERT2, and Sox9-CreERT2-showed cell-selective, inducible Cre activity with little leakiness, providing new genetic tools for researchers studying the vestibular periphery.


Development of hair cell phenotype and calyx nerve terminals in the neonatal mouse utricle.

  • Mark E Warchol‎ et al.
  • The Journal of comparative neurology‎
  • 2019‎

The vestibular organs of reptiles, birds, and mammals possess Type I and Type II sensory hair cells, which have distinct morphologies, physiology, and innervation. Little is known about how vestibular hair cells adopt a Type I or Type II identity or acquire proper innervation. One distinguishing marker is the transcription factor Sox2, which is expressed in all developing hair cells but persists only in Type II hair cells in maturity. We examined Sox2 expression and formation of afferent nerve terminals in mouse utricles between postnatal days 0 (P0) and P17. Between P3 and P14, many hair cells lost Sox2 immunoreactivity and the density of calyceal afferent nerve terminals (specific to Type I hair cells) increased in all regions of the utricle. At early time points, many calyces enclosed Sox2-labeled hair cells, while some Sox2-negative hair cells within the striola had not yet developed a calyx. These observations indicate that calyx maturation is not temporally correlated with loss of Sox2 expression in Type I hair cells. To determine which type(s) of hair cells are formed postnatally, we fate-mapped neonatal supporting cells by injecting Plp-CreER T2 :Rosa26 tdTomato mice with tamoxifen at P2 and P3. At P9, tdTomato-positive hair cells were immature and not classifiable by type. At P30, tdTomato-positive hair cells increased 1.8-fold compared to P9, and 91% of tdTomato-labeled hair cells were Type II. Our findings show that most neonatally-derived hair cells become Type II, and many Type I hair cells (formed before P2) downregulate Sox2 and acquire calyces between P0 and P14.


Large basolateral processes on type II hair cells are novel processing units in mammalian vestibular organs.

  • Rémy Pujol‎ et al.
  • The Journal of comparative neurology‎
  • 2014‎

Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells vary in shape, size, and branching, with the longest processes extending three to four hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Furthermore, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network among type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3-6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells and suggest that type II hair cells may directly communicate with each other, which has not been described in vertebrates.


Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice.

  • Stephanie A Bucks‎ et al.
  • eLife‎
  • 2017‎

Vestibular hair cells in the inner ear encode head movements and mediate the sense of balance. These cells undergo cell death and replacement (turnover) throughout life in non-mammalian vertebrates. However, there is no definitive evidence that this process occurs in mammals. We used fate-mapping and other methods to demonstrate that utricular type II vestibular hair cells undergo turnover in adult mice under normal conditions. We found that supporting cells phagocytose both type I and II hair cells. Plp1-CreERT2-expressing supporting cells replace type II hair cells. Type I hair cells are not restored by Plp1-CreERT2-expressing supporting cells or by Atoh1-CreERTM-expressing type II hair cells. Destruction of hair cells causes supporting cells to generate 6 times as many type II hair cells compared to normal conditions. These findings expand our understanding of sensorineural plasticity in adult vestibular organs and further elucidate the roles that supporting cells serve during homeostasis and after injury.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: