Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer.

  • Xiao Han‎ et al.
  • NeuroImage‎
  • 2006‎

In vivo MRI-derived measurements of human cerebral cortex thickness are providing novel insights into normal and abnormal neuroanatomy, but little is known about their reliability. We investigated how the reliability of cortical thickness measurements is affected by MRI instrument-related factors, including scanner field strength, manufacturer, upgrade and pulse sequence. Several data processing factors were also studied. Two test-retest data sets were analyzed: 1) 15 healthy older subjects scanned four times at 2-week intervals on three scanners; 2) 5 subjects scanned before and after a major scanner upgrade. Within-scanner variability of global cortical thickness measurements was <0.03 mm, and the point-wise standard deviation of measurement error was approximately 0.12 mm. Variability was 0.15 mm and 0.17 mm in average, respectively, for cross-scanner (Siemens/GE) and cross-field strength (1.5 T/3 T) comparisons. Scanner upgrade did not increase variability nor introduce bias. Measurements across field strength, however, were slightly biased (thicker at 3 T). The number of (single vs. multiple averaged) acquisitions had a negligible effect on reliability, but the use of a different pulse sequence had a larger impact, as did different parameters employed in data processing. Sample size estimates indicate that regional cortical thickness difference of 0.2 mm between two different groups could be identified with as few as 7 subjects per group, and a difference of 0.1 mm could be detected with 26 subjects per group. These results demonstrate that MRI-derived cortical thickness measures are highly reliable when MRI instrument and data processing factors are controlled but that it is important to consider these factors in the design of multi-site or longitudinal studies, such as clinical drug trials.


Food Folio by Columbia Center for Eating Disorders: A Freely Available Food Image Database.

  • E Caitlin Lloyd‎ et al.
  • Frontiers in psychology‎
  • 2020‎

Food images are useful stimuli for the study of cognitive processes as well as eating behavior. To enhance rigor and reproducibility in task-based research, it is advantageous to have stimulus sets that are publicly available and well characterized. Food Folio by Columbia Center for Eating Disorders is a publicly available set of 138 images of Western food items. The set was developed for the study of eating disorders, particularly for use in tasks that capture eating behavior characteristic of these illnesses. It contains foods that are typically eaten, as well as those typically avoided, by individuals with eating disorders. Each image has now been rated across 17 different attributes by a large general United States population sample via Amazon's Mechanical Turk (n = 1054). Ratings included subjective attributes (e.g., tastiness, healthiness, and favorable texture) as well as estimates of nutrient content (e.g., fat and carbohydrate). Each participant rated a subset of stimulus set food items (46 foods) on all 17 dimensions. Additional description of the image set is provided in terms of physical image information and accurate nutritional information. Correlations between subjective ratings were calculated and an exploratory factor analysis and exploratory cluster analysis completed. Outcomes of the factor analysis suggested foods may be described along three latent factors of healthiness, tastiness, and umami taste; the cluster analysis highlighted five distinct clusters of foods varying on these same dimensions. Descriptive outcomes indicated that the stimulus set includes a range of foods that vary along multiple dimensions and thus is likely to be useful in addressing various research questions surrounding eating behavior and cognition in healthy populations, as well as in those with eating disorders. The provision of comprehensive descriptive information allows for stimulus selection that is optimized for a given research question and promotes strong inference.


Mechanisms of Choice Behavior Shift Using Cue-approach Training.

  • Akram Bakkour‎ et al.
  • Frontiers in psychology‎
  • 2016‎

Cue-approach training has been shown to effectively shift choices for snack food items by associating a cued button-press motor response to particular food items. Furthermore, attention was biased toward previously cued items, even when the cued item is not chosen for real consumption during a choice phase. However, the exact mechanism by which preferences shift during cue-approach training is not entirely clear. In three experiments, we shed light on the possible underlying mechanisms at play during this novel paradigm: (1) Uncued, wholly predictable motor responses paired with particular food items were not sufficient to elicit a preference shift; (2) Cueing motor responses early - concurrently with food item onset - and thus eliminating the need for heightened top-down attention to the food stimulus in preparation for a motor response also eliminated the shift in food preferences. This finding reinforces our hypothesis that heightened attention at behaviorally relevant points in time is key to changing choice behavior in the cue-approach task; (3) Crucially, indicating choice using eye movements rather than manual button presses preserves the effect, thus demonstrating that the shift in preferences is not governed by a learned motor response but more likely via modulation of subjective value in higher associative regions, consistent with previous neuroimaging results. Cue-approach training drives attention at behaviorally relevant points in time to modulate the subjective value of individual items, providing a mechanism for behavior change that does not rely on external reinforcement and that holds great promise for developing real world behavioral interventions.


The effects of aging and Alzheimer's disease on cerebral cortical anatomy: specificity and differential relationships with cognition.

  • Akram Bakkour‎ et al.
  • NeuroImage‎
  • 2013‎

Although both normal aging and Alzheimer's disease (AD) are associated with regional cortical atrophy, few studies have directly compared the spatial patterns and magnitude of effects of these two processes. The extant literature has not addressed two important questions: 1) Is the pattern of age-related cortical atrophy different if cognitively intact elderly individuals with silent AD pathology are excluded? and 2) Does the age- or AD-related atrophy relate to cognitive function? Here we studied 142 young controls, 87 older controls, and 28 mild AD patients. In addition, we studied 35 older controls with neuroimaging data indicating the absence of brain amyloid. Whole-cortex analyses identified regions of interest (ROIs) of cortical atrophy in aging and in AD. Results showed that some regions are predominantly affected by age with relatively little additional atrophy in patients with AD, e.g., calcarine cortex; other regions are predominantly affected by AD with much less of an effect of age, e.g., medial temporal cortex. Finally, other regions are affected by both aging and AD, e.g., dorsolateral prefrontal cortex and inferior parietal lobule. Thus, the processes of aging and AD have both differential and partially overlapping effects on specific regions of the cerebral cortex. In particular, some frontoparietal regions are affected by both processes, most temporal lobe regions are affected much more prominently by AD than aging, while sensorimotor and some prefrontal regions are affected specifically by aging and minimally more by AD. Within normal older adults, atrophy in aging-specific cortical regions relates to cognitive performance, while in AD patients atrophy in AD-specific regions relates to cognitive performance. Further work is warranted to investigate the behavioral and clinical relevance of these findings in additional detail, as well as their histological basis; ROIs generated from the present study could be used strategically in such investigations.


The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals.

  • Bradford C Dickerson‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2009‎

Alzheimer's disease (AD) is associated with neurodegeneration in vulnerable limbic and heteromodal regions of the cerebral cortex, detectable in vivo using magnetic resonance imaging. It is not clear whether abnormalities of cortical anatomy in AD can be reliably measured across different subject samples, how closely they track symptoms, and whether they are detectable prior to symptoms. An exploratory map of cortical thinning in mild AD was used to define regions of interest that were applied in a hypothesis-driven fashion to other subject samples. Results demonstrate a reliably quantifiable in vivo signature of abnormal cortical anatomy in AD, which parallels known regional vulnerability to AD neuropathology. Thinning in vulnerable cortical regions relates to symptom severity even in the earliest stages of clinical symptoms. Furthermore, subtle thinning is present in asymptomatic older controls with brain amyloid binding as detected with amyloid imaging. The reliability and clinical validity of AD-related cortical thinning suggests potential utility as an imaging biomarker. This "disease signature" approach to cortical morphometry, in which disease effects are mapped across the cortical mantle and then used to define ROIs for hypothesis-driven analyses, may provide a powerful methodological framework for studies of neuropsychiatric diseases.


Neural correlates of state-based decision-making in younger and older adults.

  • Darrell A Worthy‎ et al.
  • NeuroImage‎
  • 2016‎

Older and younger adults performed a state-based decision-making task while undergoing functional MRI (fMRI). We proposed that younger adults would be more prone to base their decisions on expected value comparisons, but that older adults would be more reactive decision-makers who would act in response to recent changes in rewards or states, rather than on a comparison of expected values. To test this we regressed BOLD activation on two measures from a sophisticated reinforcement learning (RL) model. A value-based regressor was computed by subtracting the immediate value of the selected alternative from its long-term value. The other regressor was a state-change uncertainty signal that served as a proxy for whether the participant's state improved or declined, relative to the previous trial. Younger adults' activation was modulated by the value-based regressor in ventral striatal and medial PFC regions implicated in reinforcement learning. Older adults' activation was modulated by state-change uncertainty signals in right dorsolateral PFC, and activation in this region was associated with improved performance in the task. This suggests that older adults may depart from standard expected-value based strategies and recruit lateral PFC regions to engage in reactive decision-making strategies.


Prefrontal contributions to rule-based and information-integration category learning.

  • David M Schnyer‎ et al.
  • Neuropsychologia‎
  • 2009‎

Previous research revealed that the basal ganglia play a critical role in category learning [Ell, S. W., Marchant, N. L., & Ivry, R. B. (2006). Focal putamen lesions impair learning in rule-based, but not information-integration categorization tasks. Neuropsychologia, 44(10), 1737-1751; Maddox, W. T. & Filoteo, J. V. (2007). Modeling visual attention and category learning in amnesiacs, striatal-damaged patients and normal aging. In Advances in Clinical-cognitive science: formal modeling and assessment of processes and symptoms (pp. 113-146). Washington DC: American Psychological Association] but less is known about the specific role of prefrontal cortical (PFC) regions in category learning. The current study examined rule-based (RB) and information-integration (II) category learning in 13 patients with damage primarily to ventral PFC regions. After 600 learning trials with feedback, patients were significantly less accurate than matched controls on both RB and II learning. Model-based analysis identified subgroups of patients whose impaired performance in each task was due to the use of sub-optimal learning strategies. Those patients impaired at either II or RB learning, performed significantly worse on the Wisconsin Card Sorting Test, a test of abstract rule formation and the ability to shift and maintain rules. Lesion analysis pointed to damage in a fairly circumscribed region of ventral medial prefrontal cortex as common to the impaired group of patients and those patients without ventral PFC damage mostly performed normally. These results provide further evidence that the ventromedial prefrontal cortex is critically important for the ability to monitor and integrate feedback in order to select and maintain optimal learning strategies.


MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths.

  • Jorge Jovicich‎ et al.
  • NeuroImage‎
  • 2009‎

Automated MRI-derived measurements of in-vivo human brain volumes provide novel insights into normal and abnormal neuroanatomy, but little is known about measurement reliability. Here we assess the impact of image acquisition variables (scan session, MRI sequence, scanner upgrade, vendor and field strengths), FreeSurfer segmentation pre-processing variables (image averaging, B1 field inhomogeneity correction) and segmentation analysis variables (probabilistic atlas) on resultant image segmentation volumes from older (n=15, mean age 69.5) and younger (both n=5, mean ages 34 and 36.5) healthy subjects. The variability between hippocampal, thalamic, caudate, putamen, lateral ventricular and total intracranial volume measures across sessions on the same scanner on different days is less than 4.3% for the older group and less than 2.3% for the younger group. Within-scanner measurements are remarkably reliable across scan sessions, being minimally affected by averaging of multiple acquisitions, B1 correction, acquisition sequence (MPRAGE vs. multi-echo-FLASH), major scanner upgrades (Sonata-Avanto, Trio-TrioTIM), and segmentation atlas (MPRAGE or multi-echo-FLASH). Volume measurements across platforms (Siemens Sonata vs. GE Signa) and field strengths (1.5 T vs. 3 T) result in a volume difference bias but with a comparable variance as that measured within-scanner, implying that multi-site studies may not necessarily require a much larger sample to detect a specific effect. These results suggest that volumes derived from automated segmentation of T1-weighted structural images are reliable measures within the same scanner platform, even after upgrades; however, combining data across platform and across field-strength introduces a bias that should be considered in the design of multi-site studies, such as clinical drug trials. The results derived from the young groups (scanner upgrade effects and B1 inhomogeneity correction effects) should be considered as preliminary and in need for further validation with a larger dataset.


Differential effects of aging and Alzheimer's disease on medial temporal lobe cortical thickness and surface area.

  • Bradford C Dickerson‎ et al.
  • Neurobiology of aging‎
  • 2009‎

The volume of parcellated cortical regions is a composite measure related to both thickness and surface area. It is not clear whether volumetric decreases in medial temporal lobe (MTL) cortical regions in aging and Alzheimer's disease (AD) are due to thinning, loss of surface area, or both, nor is it clear whether aging and AD differ in their effects on these properties. Participants included 28 Younger Normals, 47 Older Normals, and 29 patients with mild AD. T1-weighted MRI data were analyzed using a novel semi-automated protocol (presented in a companion article) to delineate the boundaries of entorhinal (ERC), perirhinal (PRC), and posterior parahippocampal (PPHC) cortical regions and calculate their mean thickness, surface area, and volume. Compared to Younger Normals, Older Normals demonstrated moderately reduced ERC and PPHC volumes, which were due primarily to reduced surface area. In contrast, the expected AD-related reduction in ERC volume was produced by a large reduction in thickness with minimal additional effect (beyond that of aging) on surface area. PRC and PPHC also showed large AD-related reductions in thickness. Of all these MTL morphometric measures, ERC and PRC thinning were the best predictors of poorer episodic memory performance in AD. Although the volumes of MTL cortical regions may decrease with both aging and AD, thickness is relatively preserved in normal aging, while even in its mild clinical stage, AD is associated with a large degree of thinning of MTL cortex. These differential morphometric effects of aging and AD may reflect distinct biologic processes and ultimately may provide insights into the anatomic substrates of change in memory-related functions of MTL cortex.


The hippocampus supports deliberation during value-based decisions.

  • Akram Bakkour‎ et al.
  • eLife‎
  • 2019‎

Choosing between two items involves deliberation and comparison of the features of each item and its value. Such decisions take more time when choosing between options of similar value, possibly because these decisions require more evidence, but the mechanisms involved are not clear. We propose that the hippocampus supports deliberation about value, given its well-known role in prospection and relational cognition. We assessed the role of the hippocampus in deliberation in two experiments. First, using fMRI in healthy participants, we found that BOLD activity in the hippocampus increased as a function of deliberation time. Second, we found that patients with hippocampal damage exhibited more stochastic choices and longer reaction times than controls, possibly due to their failure to construct value-based or internal evidence during deliberation. Both sets of results were stronger in value-based decisions compared to perceptual decisions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: