Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Dicer-1-dependent Dacapo suppression acts downstream of Insulin receptor in regulating cell division of Drosophila germline stem cells.

  • Jenn-Yah Yu‎ et al.
  • Development (Cambridge, England)‎
  • 2009‎

It is important to understand the regulation of stem cell division because defects in this process can cause altered tissue homeostasis or cancer. The cyclin-dependent kinase inhibitor Dacapo (Dap), a p21/p27 homolog, acts downstream of the microRNA (miRNA) pathway to regulate the cell cycle in Drosophila melanogaster germline stem cells (GSCs). Tissue-extrinsic signals, including insulin, also regulate cell division of GSCs. We report that intrinsic and extrinsic regulators intersect in GSC division control; the Insulin receptor (InR) pathway regulates Dap levels through miRNAs, thereby controlling GSC division. Using GFP-dap 3'UTR sensors in vivo, we show that in GSCs the dap 3'UTR is responsive to Dicer-1, an RNA endonuclease III required for miRNA processing. Furthermore, the dap 3'UTR can be directly targeted by miR-7, miR-278 and miR-309 in luciferase assays. Consistent with this, miR-278 and miR-7 mutant GSCs are partially defective in GSC division and show abnormal cell cycle marker expression, respectively. These data suggest that the GSC cell cycle is regulated via the dap 3'UTR by multiple miRNAs. Furthermore, the GFP-dap 3'UTR sensors respond to InR but not to TGF-beta signaling, suggesting that InR signaling utilizes Dap for GSC cell cycle regulation. We further demonstrate that the miRNA-based Dap regulation may act downstream of InR signaling; Dcr-1 and Dap are required for nutrition-dependent cell cycle regulation in GSCs and reduction of dap partially rescues the cell cycle defect of InR-deficient GSCs. These data suggest that miRNA- and Dap-based cell cycle regulation in GSCs can be controlled by InR signaling.


The Hippo pathway controls polar cell fate through Notch signaling during Drosophila oogenesis.

  • Hsi-Ju Chen‎ et al.
  • Developmental biology‎
  • 2011‎

During Drosophila oogenesis, the somatic follicle cells form an epithelial layer surrounding the germline cells to form egg chambers. In this process, follicle cell precursors are specified into polar cells, stalk cells, and main-body follicle cells. Proper specification of these three cell types ensures correct egg chamber formation and polarization of the anterior-posterior axis of the germline cells. Multiple signaling cascades coordinate to control the follicle cell fate determination, including Notch, JAK/STAT, and Hedgehog signaling pathways. Here, we show that the Hippo pathway also participates in polar cell specification. Over-activation of yorkie (yki) leads to egg chamber fusion, possibly through attenuation of polar cell specification. Loss-of-function experiments using RNAi knockdown or generation of mutant clones by mitotic recombination demonstrates that reduction of yki expression promotes polar cell formation in a cell-autonomous manner. Consistently, polar cells mutant for hippo (hpo) or warts (wts) are not properly specified, leading to egg chamber fusion. Furthermore, Notch activity is increased in yki mutant cells and reduction of Notch activity suppresses polar cell formation in yki mutant clones. These results demonstrate that yki represses polar cell fate through Notch signaling. Collectively, our data reveal that the Hippo pathway controls polar cell specification. Through repressing Notch activity, Yki serves as a key repressor in specifying polar cells during Drosophila oogenesis.


Candidate Modifier Genes for the Penetrance of Leber's Hereditary Optic Neuropathy.

  • Hui-Chen Cheng‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Leber’s hereditary optic neuropathy (LHON) is a maternally transmitted disease caused by mitochondria DNA (mtDNA) mutation. It is characterized by acute and subacute visual loss predominantly affecting young men. The mtDNA mutation is transmitted to all maternal lineages. However, only approximately 50% of men and 10% of women harboring a pathogenic mtDNA mutation develop optic neuropathy, reflecting both the incomplete penetrance and its unexplained male prevalence, where over 80% of patients are male. Nuclear modifier genes have been presumed to affect the penetrance of LHON. With conventional genetic methods, prior studies have failed to solve the underlying pathogenesis. Whole exome sequencing (WES) is a new molecular technique for sequencing the protein-coding region of all genes in a whole genome. We performed WES from five families with 17 members. These samples were divided into the proband group (probands with acute onset of LHON, n = 7) and control group (carriers including mother and relative carriers with mtDNSA 11778 mutation, without clinical manifestation of LHON, n = 10). Through whole exome analysis, we found that many mitochondria related (MT-related) nuclear genes have high percentage of variants in either the proband group or control group. The MT genes with a difference over 0.3 of mutation percentage between the proband and control groups include AK4, NSUN4, RDH13, COQ3, and FAHD1. In addition, the pathway analysis revealed that these genes were associated with cofactor metabolism pathways. Family-based analysis showed that several candidate MT genes including METAP1D (c.41G > T), ACACB (c.1029del), ME3 (c.972G > C), NIPSNAP3B (c.280G > C, c.476C > G), and NSUN4 (c.4A > G) were involved in the penetrance of LHON. A GWAS (genome wide association study) was performed, which found that ADGRG5 (Chr16:575620A:G), POLE4 (Chr2:7495872T:G), ERMAP (Chr1:4283044A:G), PIGR (Chr1:2069357C:T;2069358G:A), CDC42BPB (Chr14:102949A:G), PROK1 (Chr1:1104562A:G), BCAN (Chr 1:1566582C:T), and NES (Chr1:1566698A:G,1566705T:C, 1566707T:C) may be involved. The incomplete penetrance and male prevalence are still the major unexplained issues in LHON. Through whole exome analysis, we found several MT genes with a high percentage of variants were involved in a family-based analysis. Pathway analysis suggested a difference in the mutation burden of MT genes underlining the biosynthesis and metabolism pathways. In addition, the GWAS analysis also revealed several candidate nuclear modifier genes. The new technology of WES contributes to provide a highly efficient candidate gene screening function in molecular genetics.


Simultaneous inhibition of GSK3alpha and GSK3beta using hairpin siRNA expression vectors.

  • Jenn-Yah Yu‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2003‎

Short interfering RNAs (siRNAs) can mediate sequence-specific inhibition of gene expression in mammalian cells. We and others have recently developed expression vector-based systems for synthesizing siRNAs or hairpin siRNAs in mammalian cells. Expression vector-based RNA interference (RNAi) effectively suppresses expression of target genes and is likely to be a powerful tool for analysis of gene function. Here we compare inhibition by vectors expressing hairpin siRNA designs either with different loop sequences connecting the two siRNA strands, or with duplex regions of different lengths. Our results suggest that lengthening the 19-nucleotide duplex region of a relatively ineffective hairpin siRNA can increase inhibition, but increasing the length of an effective 19-nt hairpin siRNA does not increase inhibition. We also demonstrate that hairpin siRNA vectors can be used to inhibit two target genes simultaneously. We have targeted glycogen synthase kinase-3alpha (GSK-3alpha) and GSK-3beta, two related kinases involved in the regulation of a variety of cellular processes and also implicated in the pathogenesis of several human diseases. Inhibition of either GSK-3alpha or GSK-3beta by transfection of hairpin siRNA vectors leads to elevated expression of the GSK-3 target beta-catenin, whereas inhibition of both kinases further increases beta-catenin expression. Our results suggest that vector-based siRNA inhibition may be useful for dissecting the functional roles of GSK-3alpha and GSK-3beta in somatic cells. The ability to inhibit two or more genes simultaneously with hairpin siRNA expression vectors should facilitate studies of gene function in mammalian cells.


Ascl1 promotes tangential migration and confines migratory routes by induction of Ephb2 in the telencephalon.

  • Yuan-Hsuan Liu‎ et al.
  • Scientific reports‎
  • 2017‎

During development, cortical interneurons generated from the ventral telencephalon migrate tangentially into the dorsal telencephalon. Although Achaete-scute family bHLH transcription factor 1 (Ascl1) plays important roles in the developing telencephalon, whether Ascl1 regulates tangential migration remains unclear. Here, we found that Ascl1 promoted tangential migration along the ventricular zone/subventricular zone (VZ/SVZ) and intermediate zone (IZ) of the dorsal telencephalon. Distal-less homeobox 2 (Dlx2) acted downstream of Ascl1 in promoting tangential migration along the VZ/SVZ but not IZ. We further identified Eph receptor B2 (Ephb2) as a direct target of Ascl1. Knockdown of EphB2 disrupted the separation of the VZ/SVZ and IZ migratory routes. Ephrin-A5, a ligand of EphB2, was sufficient to repel both Ascl1-expressing cells in vitro and tangentially migrating cortical interneurons in vivo. Together, our results demonstrate that Ascl1 induces expression of Dlx2 and Ephb2 to maintain distinct tangential migratory routes in the dorsal telencephalon.


The Hippo pathway acts downstream of the Hedgehog signaling to regulate follicle stem cell maintenance in the Drosophila ovary.

  • Ta-Hsing Hsu‎ et al.
  • Scientific reports‎
  • 2017‎

The Hippo pathway is conserved and plays important roles in organ size control. The core components of the Hippo pathway are two kinases Hippo (Hpo), Warts (Wts), and a transcription-co-activator Yorkie (Yki). Yki activity is regulated by phosphorylation, which affects its nuclear localization and stability. To determine the role of the Hippo pathway in stem cells, we examine follicle stem cells (FSCs) in the Drosophila ovary. Yki is detected in the nucleus of FSCs. Knockdown of yki in the follicle cell lineage leads to a disruption of the follicular epithelium. Mitotic clones of FSCs mutant for hpo or wts are maintained in the niche and tend to replace the other FSCs, and FSCs mutant for yki are rapidly lost, demonstrating that the Hippo pathway is both required and sufficient for FSC maintenance. Using genetic interaction analyses, we demonstrate that the Hedgehog pathway acts upstream of the Hippo pathway in regulating FSC maintenance. The nuclear localization of Yki is enhanced when the Hedgehog signaling is activated. Furthermore, a constitutively active but not a wild-type Yki promotes FSC maintenance as activation of the Hedgehog signaling does, suggesting that the Hedgehog pathway regulates Yki through a post-translational mechanism in maintaining FSCs.


The Hippo pathway controls border cell migration through distinct mechanisms in outer border cells and polar cells of the Drosophila ovary.

  • Tzu-Huai Lin‎ et al.
  • Genetics‎
  • 2014‎

The Hippo pathway is a key signaling cascade in controlling organ size. The core components of this pathway are two kinases, Hippo (Hpo) and Warts (Wts), and a transcriptional coactivator, Yorkie (Yki). Yes-associated protein (YAP, a Yki homolog in mammals) promotes epithelial-mesenchymal transition and cell migration in vitro. Here, we use border cells in the Drosophila ovary as a model to study Hippo pathway functions in cell migration in vivo. During oogenesis, polar cells secrete Unpaired (Upd), which activates JAK/STAT signaling of neighboring cells and specifies them into outer border cells. The outer border cells form a cluster with polar cells and undergo migration. We find that hpo and wts are required for migration of the border cell cluster. In outer border cells, overexpression of hpo disrupts polarization of the actin cytoskeleton and attenuates migration. In polar cells, knockdown of hpo and wts or overexpression of yki impairs border cell induction and disrupts migration. These manipulations in polar cells reduce JAK/STAT activity in outer border cells. Expression of upd-lacZ is increased and decreased in yki and hpo mutant polar cells, respectively. Furthermore, forced expression of upd in polar cells rescues defects of border cell induction and migration caused by wts knockdown. These results suggest that Yki negatively regulates border cell induction by inhibiting JAK/STAT signaling. Together, our data elucidate two distinct mechanisms of the Hippo pathway in controlling border cell migration: (1) in outer border cells, it regulates polarized distribution of the actin cytoskeleton; (2) in polar cells, it regulates upd expression to control border cell induction and migration.


Protogenin defines a transition stage during embryonic neurogenesis and prevents precocious neuronal differentiation.

  • Yu-Hui Wong‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2010‎

Many Ig superfamily members are expressed in the developing nervous system, but the functions of these molecules during neurogenesis are not all clear. Here, we explore the expression and function of one of members of this superfamily, protogenin (PRTG), in the developing nervous system. Expression of PRTG protein is strong in the neural tube of mouse embryos between embryonic days 7.75 and 9.5 but disappears after embryonic day 10.5 when the neural progenitor marker nestin expresses prominently. Perturbation of PRTG activity in P19 embryonal carcinoma cells and in chick embryos, by either RNA interference or a dominant-negative PRTG mutant, increases neuronal differentiation. Using yeast two-hybrid screening and an in situ binding assay, we were able to identify ERdj3 (a stress-inducible endoplasmic reticulum DnaJ homolog) as a putative PRTG ligand. Addition of purified ERdj3 protein into the P19 differentiation assay reduced neurogenesis. This effect was blocked by addition of either a neutralizing antibody against PRTG or purified PRTG ectodomain protein, indicating that the effect of ERdj3 on neurogenesis is mediated through PRTG. Forced expression of ERdj3 in the chick neural tube also impairs neuronal differentiation. Together, these results suggest that expression of PRTG defines a stage between pluripotent epiblasts and committed neural progenitors, and its signaling plays a critical role in suppressing premature neuronal differentiation during early neural development.


MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation.

  • Jenn-Yah Yu‎ et al.
  • Experimental cell research‎
  • 2008‎

MicroRNAs (miRNAs) are small RNAs with diverse regulatory roles. The miR-124 miRNA is expressed in neurons in the developing and adult nervous system. Here we show that overexpression of miR-124 in differentiating mouse P19 cells promotes neurite outgrowth, while blocking miR-124 function delays neurite outgrowth and decreases acetylated alpha-tubulin. Altered neurite outgrowth also was observed in mouse primary cortical neurons when miR-124 expression was increased, or when miR-124 function was blocked. In uncommitted P19 cells, miR-124 expression led to disruption of actin filaments and stabilization of microtubules. Expression of miR-124 also decreased Cdc42 protein and affected the subcellular localization of Rac1, suggesting that miR-124 may act in part via alterations to members of the Rho GTPase family. Furthermore, constitutively active Cdc42 or Rac1 attenuated neurite outgrowth promoted by miR-124. To obtain a broader perspective, we identified mRNAs downregulated by miR-124 in P19 cells using microarrays. mRNAs for proteins involved in cytoskeletal regulation were enriched among mRNAs downregulated by miR-124. A miR-124 variant with an additional 5' base failed to promote neurite outgrowth and downregulated substantially different mRNAs. These results indicate that miR-124 contributes to the control of neurite outgrowth during neuronal differentiation, possibly by regulation of the cytoskeleton.


βPS-Integrin acts downstream of Innexin 2 in modulating stretched cell morphogenesis in the Drosophila ovary.

  • Yi-Chia Huang‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2021‎

During oogenesis, a group of specialized follicle cells, known as stretched cells (StCs), flatten drastically from cuboidal to squamous shape. While morphogenesis of epithelia is critical for organogenesis, genes and signaling pathways involved in this process remain to be revealed. In addition to formation of gap junctions for intercellular exchange of small molecules, gap junction proteins form channels or act as adaptor proteins to regulate various cellular behaviors. In invertebrates, gap junction proteins are Innexins. Knockdown of Innexin 2 but not other Innexins expressed in follicle cells attenuates StC morphogenesis. Interestingly, blocking of gap junctions with an inhibitor carbenoxolone does not affect StC morphogenesis, suggesting that Innexin 2 might control StCs flattening in a gap-junction-independent manner. An excessive level of βPS-Integrin encoded by myospheroid is detected in Innexin 2 mutant cells specifically during StC morphogenesis. Simultaneous knockdown of Innexin 2 and myospheroid partially rescues the morphogenetic defect resulted from Innexin 2 knockdown. Furthermore, reduction of βPS-Integrin is sufficient to induce early StCs flattening. Taken together, our data suggest that βPS-Integrin acts downstream of Innexin 2 in modulating StCs morphogenesis.


Ginkgolide B promotes neuronal differentiation through the Wnt/β-catenin pathway in neural stem cells of the postnatal mammalian subventricular zone.

  • Ming-Yang Li‎ et al.
  • Scientific reports‎
  • 2018‎

Chinese herbal medicines (CHMs) have been used to treat human diseases for thousands of years. Among them, Ginkgo biloba is reported to be beneficial to the nervous system and a potential treatment of neurological disorders. Since the presence of adult neural stem cells (NSCs) brings hope that the brain may heal itself, whether the effect of Ginkgo biloba is on NSCs remains elusive. In this study, we found that Ginkgo biloba extract (GBE) and one of its main ingredients, ginkgolide B (GB) promoted cell cycle exit and neuronal differentiation in NSCs derived from the postnatal subventricular zone (SVZ) of the mouse lateral ventricle. Furthermore, the administration of GB increased the nuclear level of β-catenin and activated the canonical Wnt pathway. Knockdown of β-catenin blocked the neurogenic effect of GB, suggesting that GB promotes neuronal differentiation through the Wnt/β-catenin pathway. Thus, our data provide a potential mechanism underlying the therapeutic effect of GBE or GB on brain injuries and neurodegenerative disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: