Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 175 papers

Gastrectomy alters emotional reactivity in rats: neurobiological mechanisms.

  • Nicolas Salomé‎ et al.
  • The European journal of neuroscience‎
  • 2011‎

Gastrectomy (Gsx) is associated with altered emotional function and a predisposition to depression/anxiety disorders. Here we investigated the effects of Gsx on emotional reactivity in rats and explored the underlying neurobiological mechanisms. Gsx- and sham-operated rats were exposed to behavioural tests that explore anxiety- and depression-like behaviour (open field, black and white box, elevated plus maze, social interaction, forced swim) as well as memory (object recognition). The potential neurobiological mechanisms underlying these differences were explored by measuring (i) turnover of candidate neurotransmitter systems in the nucleus accumbens, (ii) hippocampal neurogenesis by BrdU labelling or by analysis of candidate genes involved in neuronal growth and (iii) changes in mRNA expression of candidate genes in dissected hippocampal and amygdala tissue. Data from individual behavioural tests as well as from multivariate analysis revealed differing emotional reactivity between Gsx- and sham-operated rats. Gsx rats showed reduced emotional reactivity in a new environment and decreased depression-like behaviour. Accumbal serotonin and dopamine turnover were both reduced in Gsx rats. Gsx also led to a memory deficit, although hippocampal neurogenesis was unaffected. Of the many candidate genes studied by real-time RT-PCR, we highlight a Gsx-associated decrease in expression of Egr-1, a transcription factor linked to neural plasticity and cognition, in the hippocampus and amygdala. Thus, Gsx induces an alteration of emotional reactivity and a memory/cognitive deficit that is associated with reduced turnover of serotonin and dopamine in the nucleus accumbens and decreased expression of Egr-1 in the hippocampus and amygdala.


Tissue effect on genetic control of transcript isoform variation.

  • Tony Kwan‎ et al.
  • PLoS genetics‎
  • 2009‎

Current genome-wide association studies (GWAS) are moving towards the use of large cohorts of primary cell lines to study a disease of interest and to assign biological relevance to the genetic signals identified. Here, we use a panel of human osteoblasts (HObs) to carry out a transcriptomic survey, similar to recent studies in lymphoblastoid cell lines (LCLs). The distinct nature of HObs and LCLs is reflected by the preferential grouping of cell type-specific genes within biologically and functionally relevant pathways unique to each tissue type. We performed cis-association analysis with SNP genotypes to identify genetic variations of transcript isoforms, and our analysis indicates that differential expression of transcript isoforms in HObs is also partly controlled by cis-regulatory genetic variants. These isoforms are regulated by genetic variants in both a tissue-specific and tissue-independent fashion, and these associations have been confirmed by RT-PCR validation. Our study suggests that multiple transcript isoforms are often present in both tissues and that genetic control may affect the relative expression of one isoform to another, rather than having an all-or-none effect. Examination of the top SNPs from a GWAS of bone mineral density show overlap with probeset associations observed in this study. The top hit corresponding to the FAM118A gene was tested for association studies in two additional clinical studies, revealing a novel transcript isoform variant. Our approach to examining transcriptome variation in multiple tissue types is useful for detecting the proportion of genetic variation common to different cell types and for the identification of cell-specific isoform variants that may be functionally relevant, an important follow-up step for GWAS.


Effects of lasofoxifene and bazedoxifene on B cell development and function.

  • Angelina I Bernardi‎ et al.
  • Immunity, inflammation and disease‎
  • 2014‎

The third generation selective estrogen receptor modulators lasofoxifene (las) and bazedoxifene (bza) are indicated for treatment of postmenopausal osteoporosis. 17β-Estradiol (E2) and the second generation SERM raloxifene (ral) have major effects on the immune system, particularly on B cells. Treatment with E2 or ral inhibits B lymphopoiesis and treatment with E2, but not ral, stimulates antibody production. The effects of las and bza on the immune system have not been studied. Therefore, the aim of this study was to investigate their role in B cell development, maturation, and function. C57BL/6 mice were sham-operated or ovariectomized (ovx) and treated with vehicle, E2, ral, las, or bza. All substances increased total bone mineral density in ovx mice, as measured by peripheral quantitative computed tomography. In uterus, bza alone lacked agonistic effect in ovx mice and even acted as an antagonist in sham mice. As expected, E2 decreased B cell numbers at all developmental stages from pre-BI cells (in bone marrow) to transitional 1 (T1) B cells (in spleen) and increased marginal zone (MZ) B cells as determined by flow cytometry. However, treatment with las or bza only decreased the last stages of bone marrow B cell development and splenic T1 B cells, but had no effect MZ B cells. E2 increased antibody-producing cells quantified by ELISPOT, but las or bza did not. In conclusion, las and bza differ from E2 by retaining normal number of cells at most B cell stages during B lymphopoiesis and maturation and by not increasing antibody-producing cells.


Hydroxysteroid (17β)-dehydrogenase 1-deficient female mice present with normal puberty onset but are severely subfertile due to a defect in luteinization and progesterone production.

  • Janne Hakkarainen‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2015‎

Hydroxysteroid (17β)-dehydrogenase type 1 (HSD17B1) catalyzes the conversion of low active 17-ketosteroids, androstenedione (A-dione) and estrone (E1) to highly active 17-hydroxysteroids, testosterone (T) and E2, respectively. In this study, the importance of HSD17B1 in ovarian estrogen production was determined using Hsd17b1 knockout (HSD17B1KO) mice. In these mice, the ovarian HSD17B enzyme activity was markedly reduced, indicating a central role of HSD17B1 in ovarian physiology. The lack of Hsd17b activity resulted in increased ovarian E1:E2 and A-dione:T ratios, but we also observed reduced progesterone concentration in HSD17B1KO ovaries. Accordingly with the altered steroid production, altered expression of Star, Cyp11a1, Lhcgr, Hsd17b7, and especially Cyp17a1 was observed. The ovaries of HSD17B1KO mice presented with all stages of folliculogenesis, while the corpus luteum structure was less defined and number reduced. Surprisingly, bundles of large granular cells of unknown origin appeared in the stroma of the KO ovaries. The HSD17B1KO mice presented with severe subfertility and failed to initiate pseudopregnancy. However, the HSD17B1KO females presented with normal estrous cycle defined by vaginal smears and normal puberty appearance. This study indicates that HSD17B1 is a key enzyme in ovarian steroidogenesis and has a novel function in initiation and stabilization of pregnancy.


Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment.

  • John P Kemp‎ et al.
  • PLoS genetics‎
  • 2014‎

Heritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we estimated the genetic (rg) and residual (re) correlations between BMD measured at the upper limbs (UL-BMD), lower limbs (LL-BMD) and skull (SK-BMD), using total-body DXA scans of ∼ 4,890 participants recruited by the Avon Longitudinal Study of Parents and their Children (ALSPAC). Point estimates of rg indicated that appendicular sites have a greater proportion of shared genetic architecture (LL-/UL-BMD rg = 0.78) between them, than with the skull (UL-/SK-BMD rg = 0.58 and LL-/SK-BMD rg = 0.43). Likewise, the residual correlation between BMD at appendicular sites (r(e) = 0.55) was higher than the residual correlation between SK-BMD and BMD at appendicular sites (r(e) = 0.20-0.24). To explore the basis for the observed differences in rg and re, genome-wide association meta-analyses were performed (n ∼ 9,395), combining data from ALSPAC and the Generation R Study identifying 15 independent signals from 13 loci associated at genome-wide significant level across different skeletal regions. Results suggested that previously identified BMD-associated variants may exert site-specific effects (i.e. differ in the strength of their association and magnitude of effect across different skeletal sites). In particular, variants at CPED1 exerted a larger influence on SK-BMD and UL-BMD when compared to LL-BMD (P = 2.01 × 10(-37)), whilst variants at WNT16 influenced UL-BMD to a greater degree when compared to SK- and LL-BMD (P = 2.31 × 10(-14)). In addition, we report a novel association between RIN3 (previously associated with Paget's disease) and LL-BMD (rs754388: β = 0.13, SE = 0.02, P = 1.4 × 10(-10)). Our results suggest that BMD at different skeletal sites is under a mixture of shared and specific genetic and environmental influences. Allowing for these differences by performing genome-wide association at different skeletal sites may help uncover new genetic influences on BMD.


Possible role of lymphocytes in glucocorticoid-induced increase in trabecular bone mineral density.

  • Louise Grahnemo‎ et al.
  • The Journal of endocrinology‎
  • 2015‎

Treatment with anti-inflammatory glucocorticoids is associated with osteoporosis. Many of the treated patients are postmenopausal women, who even without treatment have an increased risk of osteoporosis. Lymphocytes have been shown to play a role in postmenopausal and arthritis-induced osteoporosis, and they are targeted by glucocorticoids. The aim of this study was to investigate the mechanisms behind effects of glucocorticoids on bone during health and menopause, focusing on lymphocytes. Female C57BL/6 or SCID mice were therefore sham-operated or ovariectomized and 2 weeks later treatment with dexamethasone (dex), the nonsteroidal anti-inflammatory drug carprofen, or vehicle was started and continued for 2.5 weeks. At the termination of experiments, femurs were phenotyped using peripheral quantitative computed tomography and high-resolution micro-computed tomography, and markers of bone turnover were analyzed in serum. T and B lymphocyte populations in bone marrow and spleen were analyzed by flow cytometry. Dex-treated C57BL/6 mice had increased trabecular bone mineral density, but lower cortical content and thickness compared with vehicle-treated mice. The dex-treated mice also had lower levels of bone turnover markers and markedly decreased numbers of spleen T and B lymphocytes. In contrast, these effects could not be repeated when mice were treated with the nonsteroidal anti-inflammatory drug carprofen. In addition, dex did not increase trabecular bone in ovariectomized SCID mice lacking functional T and B lymphocytes. In contrast to most literature, the results from this study indicate that treatment with dex increased trabecular bone density, which may indicate that this effect is associated with corticosteroid-induced alterations of the lymphocyte populations.


Resveratrol is not as effective as physical exercise for improving reproductive and metabolic functions in rats with dihydrotestosterone-induced polycystic ovary syndrome.

  • Anna Benrick‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2013‎

Polycystic ovary syndrome (PCOS) is a reproductive and metabolic disorder associated with obesity and insulin resistance that often precedes the development of type-2 diabetes. Rats continuously exposed to dihydrotestosterone from prepuberty display typical reproductive and metabolic PCOS characteristics including anovulation, polycystic ovaries, insulin resistance, and obesity. Our aim was to investigate if resveratrol improves reproductive and metabolic functions in PCOS rats. The effect was compared to exercise. Control and PCOS rats were treated with vehicle or resveratrol (400 mg · kg(-1) · day(-1)) for 5-6 weeks. Another group of PCOS rats received vehicle treatment and exercised for 5-6 weeks. Insulin sensitivity was determined by euglycemic-hyperinsulinemic clamp. The glucose infusion rate was lower in the PCOS-vehicle group compared to control-vehicle rats (P < 0.05). Exercise increased insulin sensitivity compared with PCOS-vehicle rats (P < 0.05), but resveratrol did not. Resveratrol treatment and exercise resulted in smaller adipocytes, upregulated estrogen-related receptor α gene expression in subcutaneous fat, and improved estrus cyclicity in the previously acyclic PCOS rats. Although resveratrol had positive effects on adiposity and cyclicity in a similar manner to exercise, resveratrol does not seem to be a good candidate for treating insulin resistance associated with PCOS because no improvement in insulin sensitivity was observed in PCOS rats on normal chow.


Genome-wide association study for radiographic vertebral fractures: a potential role for the 16q24 BMD locus.

  • Ling Oei‎ et al.
  • Bone‎
  • 2014‎

Vertebral fracture risk is a heritable complex trait. The aim of this study was to identify genetic susceptibility factors for osteoporotic vertebral fractures applying a genome-wide association study (GWAS) approach. The GWAS discovery was based on the Rotterdam Study, a population-based study of elderly Dutch individuals aged > 55 years; and comprising 329 cases and 2666 controls with radiographic scoring (McCloskey–Kanis) and genetic data. Replication of one top-associated SNP was pursued by de-novo genotyping of 15 independent studies across Europe, the United States, and Australia and one Asian study. Radiographic vertebral fracture assessment was performed using McCloskey–Kanis or Genant semi-quantitative definitions. SNPs were analyzed in relation to vertebral fracture using logistic regression models corrected for age and sex. Fixed effects inverse variance and Han–Eskin alternative random effects meta-analyses were applied. Genome-wide significance was set at p < 5 × 10− 8. In the discovery, a SNP (rs11645938) on chromosome 16q24 was associated with the risk for vertebral fractures at p = 4.6 × 10− 8. However, the association was not significant across 5720 cases and 21,791 controls from 14 studies. Fixed-effects meta-analysis summary estimate was 1.06 (95% CI: 0.98–1.14; p = 0.17), displaying high degree of heterogeneity (I2 = 57%; Qhet p = 0.0006). Under Han–Eskin alternative random effects model the summary effect was significant (p = 0.0005). The SNP maps to a region previously found associated with lumbar spine bone mineral density (LS-BMD) in two large meta-analyses from the GEFOS consortium. A false positive association in the GWAS discovery cannot be excluded, yet, the low-powered setting of the discovery and replication settings (appropriate to identify risk effect size > 1.25) may still be consistent with an effect size < 1.10, more of the type expected in complex traits. Larger effort in studies with standardized phenotype definitions is needed to confirm or reject the involvement of this locus on the risk for vertebral fractures.


High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes.

  • Robert Brommage‎ et al.
  • Bone research‎
  • 2014‎

Screening gene function in vivo is a powerful approach to discover novel drug targets. We present high-throughput screening (HTS) data for 3 762 distinct global gene knockout (KO) mouse lines with viable adult homozygous mice generated using either gene-trap or homologous recombination technologies. Bone mass was determined from DEXA scans of male and female mice at 14 weeks of age and by microCT analyses of bones from male mice at 16 weeks of age. Wild-type (WT) cagemates/littermates were examined for each gene KO. Lethality was observed in an additional 850 KO lines. Since primary HTS are susceptible to false positive findings, additional cohorts of mice from KO lines with intriguing HTS bone data were examined. Aging, ovariectomy, histomorphometry and bone strength studies were performed and possible non-skeletal phenotypes were explored. Together, these screens identified multiple genes affecting bone mass: 23 previously reported genes (Calcr, Cebpb, Crtap, Dcstamp, Dkk1, Duoxa2, Enpp1, Fgf23, Kiss1/Kiss1r, Kl (Klotho), Lrp5, Mstn, Neo1, Npr2, Ostm1, Postn, Sfrp4, Slc30a5, Slc39a13, Sost, Sumf1, Src, Wnt10b), five novel genes extensively characterized (Cldn18, Fam20c, Lrrk1, Sgpl1, Wnt16), five novel genes with preliminary characterization (Agpat2, Rassf5, Slc10a7, Slc26a7, Slc30a10) and three novel undisclosed genes coding for potential osteoporosis drug targets.


SERMs have substance-specific effects on bone, and these effects are mediated via ERαAF-1 in female mice.

  • Anna E Börjesson‎ et al.
  • American journal of physiology. Endocrinology and metabolism‎
  • 2016‎

The bone-sparing effect of estrogens is mediated primarily via estrogen receptor (ER)α, which stimulates gene transcription through activation function (AF)-1 and AF-2. The role of ERαAF-1 for the estradiol (E2) effects is tissue specific. The selective ER modulators (SERMs) raloxifene (Ral), lasofoxifene (Las), and bazedoxifene (Bza) can be used to treat postmenopausal osteoporosis. They all reduce the risk for vertebral fractures, whereas Las and partly Bza, but not Ral, reduce the risk for nonvertebral fractures. Here, we have compared the tissue specificity of Ral, Las, and Bza and evaluated the role of ERαAF-1 for the effects of these SERMs, with an emphasis on bone parameters. We treated ovariectomized (OVX) wild-type (WT) mice and OVX mice lacking ERαAF-1 (ERαAF-1(0)) with E2, Ral, Las, or Bza. All three SERMs increased trabecular bone mass in the axial skeleton. In the appendicular skeleton, only Las increased the trabecular bone volume/tissue volume and trabecular number, whereas both Ral and Las increased the cortical bone thickness and strength. However, Ral also increased cortical porosity. The three SERMs had only a minor effect on uterine weight. Notably, all evaluated effects of these SERMs were absent in ovx ERαAF-1(0) mice. In conclusion, all SERMs had similar effects on axial bone mass. However, the SERMs had slightly different effects on the appendicular skeleton since only Las increased the trabecular bone mass and only Ral increased the cortical porosity. Importantly, all SERM effects require a functional ERαAF-1 in female mice. These results could lead to development of more specific treatments for osteoporosis.


Age at adiposity rebound is associated with fat mass in young adult males-the GOOD study.

  • Claes Ohlsson‎ et al.
  • PloS one‎
  • 2012‎

Age at adiposity rebound (AR) is associated with obesity and Type 2 Diabetes in adults. The aim of the present study was to investigate the role of age at AR in adult fat mass, fat distribution and pubertal timing for a Swedish cohort.


Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts.

  • Karani S Vimaleswaran‎ et al.
  • PLoS medicine‎
  • 2013‎

Obesity is associated with vitamin D deficiency, and both are areas of active public health concern. We explored the causality and direction of the relationship between body mass index (BMI) and 25-hydroxyvitamin D [25(OH)D] using genetic markers as instrumental variables (IVs) in bi-directional Mendelian randomization (MR) analysis.


Genetic determinants of serum testosterone concentrations in men.

  • Claes Ohlsson‎ et al.
  • PLoS genetics‎
  • 2011‎

Testosterone concentrations in men are associated with cardiovascular morbidity, osteoporosis, and mortality and are affected by age, smoking, and obesity. Because of serum testosterone's high heritability, we performed a meta-analysis of genome-wide association data in 8,938 men from seven cohorts and followed up the genome-wide significant findings in one in silico (n = 871) and two de novo replication cohorts (n = 4,620) to identify genetic loci significantly associated with serum testosterone concentration in men. All these loci were also associated with low serum testosterone concentration defined as <300 ng/dl. Two single-nucleotide polymorphisms at the sex hormone-binding globulin (SHBG) locus (17p13-p12) were identified as independently associated with serum testosterone concentration (rs12150660, p = 1.2×10(-41) and rs6258, p = 2.3×10(-22)). Subjects with ≥ 3 risk alleles of these variants had 6.5-fold higher risk of having low serum testosterone than subjects with no risk allele. The rs5934505 polymorphism near FAM9B on the X chromosome was also associated with testosterone concentrations (p = 5.6×10(-16)). The rs6258 polymorphism in exon 4 of SHBG affected SHBG's affinity for binding testosterone and the measured free testosterone fraction (p<0.01). Genetic variants in the SHBG locus and on the X chromosome are associated with a substantial variation in testosterone concentrations and increased risk of low testosterone. rs6258 is the first reported SHBG polymorphism, which affects testosterone binding to SHBG and the free testosterone fraction and could therefore influence the calculation of free testosterone using law-of-mass-action equation.


Adrenals Contribute to Growth of Castration-Resistant VCaP Prostate Cancer Xenografts.

  • Riikka Huhtaniemi‎ et al.
  • The American journal of pathology‎
  • 2018‎

The role of adrenal androgens as drivers for castration-resistant prostate cancer (CRPC) growth in humans is generally accepted; however, the value of preclinical mouse models of CRPC is debatable, because mouse adrenals do not produce steroids activating the androgen receptor. In this study, we confirmed the expression of enzymes essential for de novo synthesis of androgens in mouse adrenals, with high intratissue concentration of progesterone (P4) and moderate levels of androgens, such as androstenedione, testosterone, and dihydrotestosterone, in the adrenal glands of both intact and orchectomized (ORX) mice. ORX alone had no effect on serum P4 concentration, whereas orchectomized and adrenalectomized (ORX + ADX) resulted in a significant decrease in serum P4 and in a further reduction in the low levels of serum androgens (androstenedione, testosterone, and dihydrotestosterone), measured by mass spectrometry. In line with this, the serum prostate-specific antigen and growth of VCaP xenografts in mice after ORX + ADX were markedly reduced compared with ORX alone, and the growth difference was not abolished by a glucocorticoid treatment. Moreover, ORX + ADX altered the androgen-dependent gene expression in the tumors, similar to that recently shown for the enzalutamide treatment. These data indicate that in contrast to the current view, and similar to humans, mouse adrenals synthesize significant amounts of steroids that contribute to the androgen receptor-dependent growth of CRPC.


Interactions Between the Gravitostat and the Fibroblast Growth Factor System for the Regulation of Body Weight.

  • Vilborg Palsdottir‎ et al.
  • Endocrinology‎
  • 2019‎

Both fibroblast growth factors (FGFs), by binding to FGF receptors (FGFRs), and activation of the gravitostat, by artificial loading, decrease the body weight (BW). Previous studies demonstrate that both the FGF system and loading have the capacity to regulate BW independently of leptin. The aim of the current study was to determine the possible interactions between the effect of increased loading and the FGF system for the regulation of BW. We observed that the BW-reducing effect of increased loading was abolished in mice treated with a monoclonal antibody directed against FGFR1c, suggesting interactions between the two systems. As serum levels of endocrine FGF21 and hepatic FGF21 mRNA were increased in the loaded mice compared with the control mice, we first evaluated the loading response in FGF21 over expressing mice with constant high FGF21 levels. Leptin treatment, but not increased loading, decreased the BW in the FGF21-overexpressing mice, demonstrating that specifically the loading effect is attenuated in the presence of high activity in the FGF system. However, as FGF21 knockout mice displayed a normal loading response on BW, FGF21 is neither mediating nor essential for the loading response. In conclusion, the BW-reducing effect of increased loading but not of leptin treatment is blocked by high activity in the FGF system. We propose that both the gravitostat and the FGF system regulate BW independently of leptin and that pharmacologically enhanced activity in the FGF system reduces the sensitivity of the gravitostat.


Programmed death ligand-1 (PD-L1) expression in meningioma; prognostic significance and its association with hypoxia and NFKB2 expression.

  • Shirin Karimi‎ et al.
  • Scientific reports‎
  • 2020‎

Management of clinically aggressive meningiomas is a considerable challenge. PD-L1 induced immune suppression has increasingly gained attention in clinical management of cancer; however, to date, the clinical significance and regulatory mechanisms of PD-L1 in meningioma is not yet fully characterized. We sought to characterize PD-L1 expression in meningioma and elucidate its regulatory mechanisms. Immunohistochemical staining of PD-L1 expression in meningiomas showed 43% positivity in both tumor and immune cells and we observed intra and inter tumoral heterogeneity. Univariate and multivariate analyses confirmed that PD-L1 protein expression is an independent prognostic marker for worse recurrence free survival in meningioma. Furthermore, our transcriptomic analysis revealed a strong association between PD-L1 expression and that of NFKB2 and carbonic anhydrase 9 (CA9). We also demonstrated that both of these markers, when co-expressed with PD-L1, predict tumor progression. Our studies on several meningioma cell lines cultured in hypoxic conditions validated the association of CA9 and PD-L1 expression. Here we show the clinical significance of PD-L1 in meningioma as a marker that can predict tumor recurrence. We also show an association PD-L1 expression with NFKB2 expression and its induction under hypoxic conditions. These findings may open new avenues of molecular investigation in pathogenesis of meningioma.


Excess of ovarian nerve growth factor impairs embryonic development and causes reproductive and metabolic dysfunction in adult female mice.

  • Maria Manti‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2020‎

Nerve growth factor (NGF) is critical for the development and maintenance of the peripheral sympathetic neurons. NGF is also involved in the ovarian sympathetic innervation and in the development and maintenance of folliculogenesis. Women with the endocrine disorder, polycystic ovary syndrome (PCOS), have an increased sympathetic nerve activity and increased ovarian NGF levels. The role of ovarian NGF excess in the PCOS pathophysiology and in the PCOS-related features is unclear. Here, using transgenic mice overexpressesing NGF in the ovarian theca cells (17NF mice), we assessed the female embryonic development, and the reproductive and metabolic profile in adult females. Ovarian NGF excess caused growth restriction in the female fetuses, and a delayed gonocyte and primary oocyte maturation. In adulthood, the 17NF mice displayed irregular estrous cycles and altered ovarian expression of steroidogenic and epigenetic markers. They also exhibited an increased sympathetic output with increased circulating dopamine, and metabolic dysfunction reflected by aberrant adipose tissue morphology and function, impaired glucose metabolism, decreased energy expenditure, and hepatic steatosis. These findings indicate that ovarian NGF excess leads to adverse fetal development and to reproductive and metabolic complications in adulthood, mirroring common features of PCOS. This work provides evidence that NGF excess may be implicated in the PCOS pathophysiology.


Causal relationship between obesity and serum testosterone status in men: A bi-directional mendelian randomization analysis.

  • Joel Eriksson‎ et al.
  • PloS one‎
  • 2017‎

Obesity in men is associated with low serum testosterone and both are associated with several diseases and increased mortality.


Low-Frequency Synonymous Coding Variation in CYP2R1 Has Large Effects on Vitamin D Levels and Risk of Multiple Sclerosis.

  • Despoina Manousaki‎ et al.
  • American journal of human genetics‎
  • 2017‎

Vitamin D insufficiency is common, correctable, and influenced by genetic factors, and it has been associated with risk of several diseases. We sought to identify low-frequency genetic variants that strongly increase the risk of vitamin D insufficiency and tested their effect on risk of multiple sclerosis, a disease influenced by low vitamin D concentrations. We used whole-genome sequencing data from 2,619 individuals through the UK10K program and deep-imputation data from 39,655 individuals genotyped genome-wide. Meta-analysis of the summary statistics from 19 cohorts identified in CYP2R1 the low-frequency (minor allele frequency = 2.5%) synonymous coding variant g.14900931G>A (p.Asp120Asp) (rs117913124[A]), which conferred a large effect on 25-hydroxyvitamin D (25OHD) levels (-0.43 SD of standardized natural log-transformed 25OHD per A allele; p value = 1.5 × 10-88). The effect on 25OHD was four times larger and independent of the effect of a previously described common variant near CYP2R1. By analyzing 8,711 individuals, we showed that heterozygote carriers of this low-frequency variant have an increased risk of vitamin D insufficiency (odds ratio [OR] = 2.2, 95% confidence interval [CI] = 1.78-2.78, p = 1.26 × 10-12). Individuals carrying one copy of this variant also had increased odds of multiple sclerosis (OR = 1.4, 95% CI = 1.19-1.64, p = 2.63 × 10-5) in a sample of 5,927 case and 5,599 control subjects. In conclusion, we describe a low-frequency CYP2R1 coding variant that exerts the largest effect upon 25OHD levels identified to date in the general European population and implicates vitamin D in the etiology of multiple sclerosis.


Revisiting the critical weight hypothesis for regulation of pubertal timing in boys.

  • Maria Bygdell‎ et al.
  • The American journal of clinical nutrition‎
  • 2021‎

Recent findings indicate that there is a body weight-sensing homeostatic regulation of body weight in postpubertal rodents and humans. It is possible that body weight sensing also might be involved in the regulation of pubertal timing. Although an early small study suggested that there is a critical body weight for pubertal timing in girls, most studies have focused on BMI and reported an inverse association between BMI and pubertal timing.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: