Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

Hyperactive S6K1 mediates oxidative stress and endothelial dysfunction in aging: inhibition by resveratrol.

  • Angana G Rajapakse‎ et al.
  • PloS one‎
  • 2011‎

Mammalian target of rapamycin (mTOR)/S6K1 signalling emerges as a critical regulator of aging. Yet, a role of mTOR/S6K1 in aging-associated vascular endothelial dysfunction remains unknown. In this study, we investigated the role of S6K1 in aging-associated endothelial dysfunction and effects of the polyphenol resveratrol on S6K1 in aging endothelial cells. We show here that senescent endothelial cells displayed higher S6K1 activity, increased superoxide production and decreased bioactive nitric oxide (NO) levels than young endothelial cells, which is contributed by eNOS uncoupling. Silencing S6K1 in senescent cells reduced superoxide generation and enhanced NO production. Conversely, over-expression of a constitutively active S6K1 mutant in young endothelial cells mimicked endothelial dysfunction of the senescent cells through eNOS uncoupling and induced premature cellular senescence. Like the mTOR/S6K1 inhibitor rapamycin, resveratrol inhibited S6K1 signalling, resulting in decreased superoxide generation and enhanced NO levels in the senescent cells. Consistent with the data from cultured cells, an enhanced S6K1 activity, increased superoxide generation, and decreased bioactive NO levels associated with eNOS uncoupling were also detected in aortas of old WKY rats (aged 20-24 months) as compared to the young animals (1-3 months). Treatment of aortas of old rats with resveratrol or rapamycin inhibited S6K1 activity, oxidative stress, and improved endothelial NO production. Our data demonstrate a causal role of the hyperactive S6K1 in eNOS uncoupling leading to endothelial dysfunction and vascular aging. Resveratrol improves endothelial function in aging, at least in part, through inhibition of S6K1. Targeting S6K1 may thus represent a novel therapeutic approach for aging-associated vascular disease.


Role of p38 mitogen-activated protein kinase in vascular endothelial aging: interaction with Arginase-II and S6K1 signaling pathway.

  • Zongsong Wu‎ et al.
  • Aging‎
  • 2015‎

p38 mitogen-activated protein kinase (p38) regulates cellular senescence and senescence-associated secretory phenotype (SASP), i.e., secretion of cytokines and/or chemokines. Previous work showed that augmented arginase-II (Arg-II) and S6K1 interact with each other to promote endothelial senescence through uncoupling of endothelial nitric oxide synthase (eNOS). Here we demonstrate eNOS-uncoupling, augmented expression/secretion of IL-6 and IL-8, elevation of p38 activation and Arg-II levels in senescent endothelial cells. Silencing Arg-II or p38α in senescent cells recouples eNOS and inhibits IL-6 and IL-8 secretion. Overexpression of Arg-II in young endothelial cells causes eNOS-uncoupling and enhances IL-6 and IL-8 expression/secretion, which is prevented by p38 inhibition or by antioxidant. Moreover, p38 activation and expression of IL-6 and KC (the murine IL-8 homologue) are increased in the heart and/or aortas of wild type (WT) old mice, which is abolished in mice with Arg-II gene deficiency (Arg-II-/-). In addition, inhibition of p38 in the old WT mice recouples eNOS function and reduces IL-6 and KC expression in the aortas and heart. Silencing Arg-II or p38a or S6K1 inhibits each other in senescence endothelial cells. Thus, Arg-II, p38, and S6K1 form a positive circuit which regulates endothelial senescence and cardiovascular aging.


Caloric restriction induces energy-sparing alterations in skeletal muscle contraction, fiber composition and local thyroid hormone metabolism that persist during catch-up fat upon refeeding.

  • Paula B M De Andrade‎ et al.
  • Frontiers in physiology‎
  • 2015‎

Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i) higher expression of muscle deiodinase type 3 (DIO3), which inactivates tri-iodothyronine (T3), and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2), (ii) slower net formation of T3 from its T4 precursor in muscles, and (iii) accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development. We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. These energy-sparing effects persist during weight recovery and contribute to catch-up fat.


Uninephrectomy in rats on a fixed food intake results in adipose tissue lipolysis implicating spleen cytokines.

  • Denis Arsenijevic‎ et al.
  • Frontiers in physiology‎
  • 2015‎

The role of mild kidney dysfunction in altering lipid metabolism and promoting inflammation was investigated in uninephrectomized rats (UniNX) compared to Sham-operated controls rats. The impact of UniNX was studied 1, 2, and 4 weeks after UniNX under mild food restriction at 90% of ad libitum intake to ensure the same caloric intake in both groups. UniNX resulted in the reduction of fat pad weight. UniNX was associated with increased circulating levels of beta-hydroxybutyrate and glycerol, as well as increased fat pad mRNA of hormone sensitive lipase and adipose triglyceride lipase, suggesting enhanced lipolysis. No decrease in fat pad lipogenesis as assessed by fatty acid synthase activity was observed. Circulating hormones known to regulate lipolysis such as leptin, T3, ghrelin, insulin, corticosterone, angiotensin 1, and angiotensin 2 were not different between the two groups. In contrast, a select group of circulating lipolytic cytokines, including interferon-gamma and granulocyte macrophage-colony stimulating factor, were increased after UniNX. These cytokine levels were elevated in the spleen, but decreased in the kidney, liver, and fat pads. This could be explained by anti-inflammatory factors SIRT1, a member of the sirtuins, and the farnesoid x receptor (FXR), which were decreased in the spleen but elevated in the kidney, liver, and fat pads (inguinal and epididymal). Our study suggests that UniNX induces adipose tissue lipolysis in response to increased levels of a subset of lipolytic cytokines of splenic origin.


Arginase-II Deficiency Extends Lifespan in Mice.

  • Yuyan Xiong‎ et al.
  • Frontiers in physiology‎
  • 2017‎

The mitochondrial arginase type II (Arg-II) has been shown to interact with ribosomal protein S6 kinase 1 (S6K1) and mitochondrial p66Shc and to promote cell senescence, apoptosis and inflammation under pathological conditions. However, the impact of Arg-II on organismal lifespan is not known. In this study, we demonstrate a significant lifespan extension in mice with Arg-II gene deficiency (Arg-II-/-) as compared to wild type (WT) control animals. This effect is more pronounced in the females than in the males. The gender difference is associated with higher Arg-II expression levels in the females than in the males in skin and heart at both young and old age. Ablation of Arg-II gene significantly reduces the aging marker p16INK4a levels in these tissues of old female mice, whereas in the male mice this effect of Arg-II deficiency is weaker. In line with this observation, age-associated increases in S6K1 signaling and p66Shc levels in heart are significantly attenuated in the female Arg-II-/- mice. In the male mice, only p66Shc but not S6K1 signaling is reduced. In summary, our study demonstrates that Arg-II may play an important role in the acceleration of aging in mice. Genetic disruption of Arg-II in mouse extends lifespan predominantly in females, which relates to inhibition of S6K1, p66Shc, and p16INK4a. Thus, Arg-II may represent a promising target to decelerate aging process and extend lifespan as well as to treat age-related diseases.


Arginase-II activates mTORC1 through myosin-1b in vascular cell senescence and apoptosis.

  • Yi Yu‎ et al.
  • Cell death & disease‎
  • 2018‎

Type-II L-arginine:ureahydrolase, arginase-II (Arg-II), is shown to activate mechanistic target of rapamycin complex 1 (mTORC1) pathway and contributes to cell senescence and apoptosis. In an attempt to elucidate the underlying mechanism, we identified myosin-1b (Myo1b) as a mediator. Overexpression of Arg-II induces re-distribution of lysosome and mTOR but not of tuberous sclerosis complex (TSC) from perinuclear area to cell periphery, dissociation of TSC from lysosome and activation of mTORC1-ribosomal protein S6 kinase 1 (S6K1) pathway. Silencing Myo1b prevents all these alterations induced by Arg-II. By overexpressing Myo1b or its mutant with point mutation in its pleckstrin homology (PH) domain we further demonstrate that this effect of Myo1b is dependent on its PH domain that is required for Myo1b-lysosome association. Notably, Arg-II promotes association of Myo1b with lysosomes. In addition, we show that in senescent vascular smooth muscle cells with elevated endogenous Arg-II, silencing Myo1b prevents Arg-II-mediated lysosomal positioning, dissociation of TSC from lysosome, mTORC1 activation and cell apoptosis. Taken together, our study demonstrates that Myo1b mediates the effect of Arg-II in activating mTORC1-S6K1 through promoting peripheral lysosomal positioning, that results in spatial separation and thus dissociation of TSC from lysosome, leading to hyperactive mTORC1-S6K1 signaling linking to cellular senescence/apoptosis.


Uninephrectomy-Induced Lipolysis and Low-Grade Inflammation Are Mimicked by Unilateral Renal Denervation.

  • Denis Arsenijevic‎ et al.
  • Frontiers in physiology‎
  • 2016‎

Uninephrectomy (UniNX) in rats on a fixed food intake leads to increased lipolysis and a low-grade inflammation with an increased subset of circulating cytokines. Because UniNX ablates renal nerves on the side of the removed kidney, we tested the contribution of unilateral renal denervation in the phenotype of UniNX. We compared Sham-operated controls, left nephrectomy (UniNX) and unilateral left kidney denervation (uDNX) in rats 4 weeks after surgery. uDNX did not affect kidney weight and function. In general, the uDNX phenotype was similar to the UniNX phenotype especially for lipolysis in fat pads and increased low-grade inflammation. uDNX led to decreased fat pad weight and increased hormone sensitive lipase and adipocyte triglyceride lipase mRNA levels in epididymal and inguinal adipose tissue, as well as increased circulating lipolysis markers β-hydroxybutyrate and glycerol. Measured circulating hormones such as leptin, T3 and insulin were similar amongst the three groups. The lipolytic cytokines interferon-gamma and granulocyte macrophage colony stimulating factor were increased in the circulation of both uDNX and UniNX groups. These two cytokines were also elevated in the spleen of both groups, but contrastingly they were decreased in fat pads, liver, and kidneys. Both uDNX and UniNX similarly increased noradrenaline content in fat pads and spleen. Melanocortin 4 receptor mRNA levels were increased in the brains of both uDNX and UniNX compared to Sham and may contribute to increased tissue noradrenaline levels. In addition, the farnesoid x receptor (FXR) may contribute to changes in tissue metabolism and inflammation, as anti-inflammatory FXR was decreased in the spleen but increased in other tissues in uDNX and UniNX compared to Sham. In summary, both uDNX and UniNX in rats promote metabolic and immunological alterations by mechanisms that seem to implicate modification of unilateral renal nerve pathways as well as central and peripheral neural pathways.


A role for pancreatic beta-cell secretory hyperresponsiveness in catch-up growth hyperinsulinemia: Relevance to thrifty catch-up fat phenotype and risks for type 2 diabetes.

  • Marina Casimir‎ et al.
  • Nutrition & metabolism‎
  • 2011‎

Current notions about mechanisms by which catch-up growth predisposes to later type 2 diabetes center upon those that link hyperinsulinemia with an accelerated rate of fat deposition (catch-up fat). Using a rat model of semistarvation-refeeding in which catch-up fat is driven solely by elevated metabolic efficiency associated with hyperinsulinemia, we previously reported that insulin-stimulated glucose utilization is diminished in skeletal muscle but increased in white adipose tissue. Here, we investigated the possibility that hyperinsulinemia during catch-up fat can be contributed by changes in the secretory response of pancreatic beta-cells to glucose. Using the rat model of semistarvation-refeeding showing catch-up fat and hyperinsulinemia, we compared isocalorically refed and control groups for potential differences in pancreatic morphology and in glucose-stimulated insulin secretion during in situ pancreas perfusions as well as ex vivo isolated islet perifusions. Between refed and control animals, no differences were found in islet morphology, insulin content, and the secretory responses of perifused isolated islets upon glucose stimulation. By contrast, the rates of insulin secretion from in situ perfused pancreas showed that raising glucose from 2.8 to 16.7 mmol/l produced a much more pronounced increase in insulin release in refed than in control groups (p < 0.01). These results indicate a role for islet secretory hyperresponsiveness to glucose in the thrifty mechanisms that drive catch-up fat through glucose redistribution between skeletal muscle and adipose tissue. Such beta-cell hyperresponsiveness to glucose may be a key event in the link between catch-up growth, hyperinsulinemia and risks for later type 2 diabetes.


Uninephrectomy in Rats on a Fixed Food Intake Potentiates Both Anorexia and Circulating Cytokine Subsets in Response to LPS.

  • Denis Arsenijevic‎ et al.
  • Frontiers in immunology‎
  • 2015‎

Recent human studies have suggested that mild reduction in kidney function can alter immune response and increase susceptibility to infection. The role of mild reduction in kidney function in altering susceptibility to bacterial lipopolysaccharide (LPS) responses was investigated in uninephrectomized rats compared to Sham-operated controls rats 4 weeks after surgery. Throughout the 4 weeks, all rats were maintained under mild food restriction at 90% of ad libitum intake to ensure the same caloric intake in both groups. In comparison to Sham, uninephrectomy (UniNX) potentiated LPS-induced anorexia by 2.1-fold. The circulating anorexigenic cytokines granulocyte-macrophage colony stimulating factor, interferon-γ, tumor necrosis factor-α, and complement-derived acylation-stimulating protein were elevated after LPS in UniNX animals compared to Sham animals. Interleukin(IL)1β and IL6 pro-inflammatory cytokines were transiently increased. Anti-inflammatory cytokines IL4 and IL10 did not differ or had a tendency to be lower in UniNX group compared to Sham animals. LPS-induced anorexia was associated with increased anorexigenic neuropeptides mRNA for pro-opiomelanocortin, corticotrophin-releasing factor, and cocaine-amphetamine-regulated transcript in the hypothalamus of both Sham and UniNX groups, but at higher levels in the UniNX group. Melanocortin-4-receptor mRNA was markedly increased in the UniNX group, which may have contributed to the enhanced anorexic response to LPS of the UniNX group. In summary, UniNX potentiates pro-inflammatory cytokine production, anorexia, and selected hypothalamic anorexigenic neuropeptides in response to LPS.


Arginase-II negatively regulates renal aquaporin-2 and water reabsorption.

  • Ji Huang‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2018‎

Type-II l-arginine:ureahydrolase, arginase-II (Arg-II), is abundantly expressed in the kidney. The physiologic role played by Arg-II in the kidney remains unknown. Herein, we report that in mice that are deficient in Arg-II (Arg-II-/-), total and membrane-associated aquaporin-2 (AQP2) protein levels were significantly higher compared with wild-type (WT) controls. Water deprivation enhanced Arg-II expression, AQP2 levels, and membrane association in collecting ducts. Effects of water deprivation on AQP2 were stronger in Arg-II-/- mice than in WT mice. Accordingly, a decrease in urine volume and an increase in urine osmolality under water deprivation were more pronounced in Arg-II-/- mice than in WT mice, which correlated with a weaker increase in plasma osmolality in Arg-II-/- mice. There was no difference in vasopressin release under water deprivation conditions between either genotype of mice. Although total AQP2 and phosphorylated AQP2-S256 levels (mediated by PKA) in kidneys under water deprivation conditions were significantly higher in Arg-II-/- mice compared with WT animals, there is no difference in the ratio of AQP2-S256:AQP2. In cultured mouse collecting duct principal mCCDcl1 cells, expression of both Arg-II and AQP2 were enhanced by the vasopressin type 2 receptor agonist, desamino- d-arginine vasopressin (dDAVP). Silencing Arg-II enhanced the expression and membrane association of AQP2 by dDAVP without influencing cAMP levels. In conclusion, in vivo and in vitro experiments demonstrate that Arg-II negatively regulates AQP2 and the urine-concentrating capability in kidneys via a mechanism that is not associated with the modulation of the cAMP pathway.-Huang, J., Montani, J.-P., Verrey, F., Feraille, E., Ming, X.-F., Yang, Z. Arginase-II negatively regulates renal aquaporin-2 and water reabsorption.


Arginase-I enhances vascular endothelial inflammation and senescence through eNOS-uncoupling.

  • Cuicui Zhu‎ et al.
  • BMC research notes‎
  • 2017‎

Augmented arginase-II (Arg-II) is implicated in endothelial senescence and inflammation through a mutual positive regulatory circuit with S6K1. This study was conducted to investigate whether Arg-I, another isoform of arginase that has been also reported to play a role in vascular endothelial dysfunction, promotes endothelial senescence through similar mechanisms.


p38 mitogen-activated protein kinase is involved in arginase-II-mediated eNOS-uncoupling in obesity.

  • Yi Yu‎ et al.
  • Cardiovascular diabetology‎
  • 2014‎

Endothelial nitric oxide synthase (eNOS)-uncoupling links obesity-associated insulin resistance and type-II diabetes to the increased incidence of cardiovascular disease. Studies have indicated that increased arginase is involved in eNOS-uncoupling through competing with the substrate L-arginine. Given that arginase-II (Arg-II) exerts some of its biological functions through crosstalk with signal transduction pathways, and that p38 mitogen-activated protein kinase (p38mapk) is involved in eNOS-uncoupling, we investigated here whether p38mapk is involved in Arg-II-mediated eNOS-uncoupling in a high fat diet (HFD)-induced obesity mouse model.


PER2 promotes glucose storage to liver glycogen during feeding and acute fasting by inducing Gys2 PTG and G L expression.

  • Fabio Zani‎ et al.
  • Molecular metabolism‎
  • 2013‎

The interplay between hepatic glycogen metabolism and blood glucose levels is a paradigm of the rhythmic nature of metabolic homeostasis. Here we show that mice lacking a functional PER2 protein (Per2 (Brdm1) ) display reduced fasting glycemia, altered rhythms of hepatic glycogen accumulation, and altered rhythms of food intake. Per2 (Brdm1) mice show reduced hepatic glycogen content and altered circadian expression during controlled fasting and refeeding. Livers from Per2 (Brdm1) mice display reduced glycogen synthase protein levels during refeeding, and increased glycogen phosphorylase activity during fasting. The latter is explained by PER2 action on the expression of the adapter proteins PTG and GL, which target the protein phosphatase-1 to glycogen to decrease glycogen phosphorylase activity. Finally, PER2 interacts with genomic regions of Gys2, PTG, and G L . These results indicate an important role for PER2 in the hepatic transcriptional response to feeding and acute fasting that promotes glucose storage to liver glycogen.


A role for adipose tissue de novo lipogenesis in glucose homeostasis during catch-up growth: a Randle cycle favoring fat storage.

  • Helena Marcelino‎ et al.
  • Diabetes‎
  • 2013‎

Catch-up growth, a risk factor for type 2 diabetes, is characterized by hyperinsulinemia and accelerated body fat recovery. Using a rat model of semistarvation-refeeding that exhibits catch-up fat, we previously reported that during refeeding on a low-fat diet, glucose tolerance is normal but insulin-dependent glucose utilization is decreased in skeletal muscle and increased in adipose tissue, where de novo lipogenic capacity is concomitantly enhanced. Here we report that isocaloric refeeding on a high-fat (HF) diet blunts the enhanced in vivo insulin-dependent glucose utilization for de novo lipogenesis (DNL) in adipose tissue. These are shown to be early events of catch-up growth that are independent of hyperphagia and precede the development of overt adipocyte hypertrophy, adipose tissue inflammation, or defective insulin signaling. These results suggest a role for enhanced DNL as a glucose sink in regulating glycemia during catch-up growth, which is blunted by exposure to an HF diet, thereby contributing, together with skeletal muscle insulin resistance, to the development of glucose intolerance. Our findings are presented as an extension of the Randle cycle hypothesis, whereby the suppression of DNL constitutes a mechanism by which dietary lipids antagonize glucose utilization for storage as triglycerides in adipose tissue, thereby impairing glucose homeostasis during catch-up growth.


ARG2 impairs endothelial autophagy through regulation of MTOR and PRKAA/AMPK signaling in advanced atherosclerosis.

  • Yuyan Xiong‎ et al.
  • Autophagy‎
  • 2014‎

Impaired autophagy function and enhanced ARG2 (arginase 2)-MTOR (mechanistic target of rapamycin) crosstalk are implicated in vascular aging and atherosclerosis. We are interested in the role of ARG2 and the potential underlying mechanism(s) in modulation of endothelial autophagy. Using human nonsenescent "young" and replicative senescent endothelial cells as well as Apolipoprotein E-deficient (apoe(-/-)Arg2(+/+)) and Arg2-deficient apoe(-/-) (apoe(-/-)arg2(-/-)) mice fed a high-fat diet for 10 wk as the atherosclerotic animal model, we show here that overexpression of ARG2 in the young cells suppresses endothelial autophagy with concomitant enhanced expression of RICTOR, the essential component of the MTORC2 complex, leading to activation of the AKT-MTORC1-RPS6KB1/S6K1 (ribosomal protein S6 kinase, 70kDa, polypeptide 1) cascade and inhibition of PRKAA/AMPK (protein kinase, AMP-activated, α catalytic subunit). Expression of an inactive ARG2 mutant (H160F) had the same effect. Moreover, silencing RPS6KB1 or expression of a constitutively active PRKAA prevented autophagy suppression by ARG2 or H160F. In senescent cells, enhanced ARG2-RICTOR-AKT-MTORC1-RPS6KB1 and decreased PRKAA signaling and autophagy were observed, which was reversed by silencing ARG2 but not by arginase inhibitors. In line with the above observations, genetic ablation of Arg2 in apoe(-/-) mice reduced RPS6KB1, enhanced PRKAA signaling and endothelial autophagy in aortas, which was associated with reduced atherosclerosis lesion formation. Taken together, the results demonstrate that ARG2 impairs endothelial autophagy independently of the L-arginine ureahydrolase activity through activation of RPS6KB1 and inhibition of PRKAA, which is implicated in atherogenesis.


Genetic Targeting of Arginase-II in Mouse Prevents Renal Oxidative Stress and Inflammation in Diet-Induced Obesity.

  • Ji Huang‎ et al.
  • Frontiers in physiology‎
  • 2016‎

Obesity is associated with development and progression of chronic kidney disease (CKD). Recent evidence demonstrates that enhanced levels of the L-arginine:ureahydrolase, including the two isoenzymes arginase-I (Arg-I) and arginase-II (Arg-II) in vascular endothelial cells promote uncoupling of endothelial nitric oxide synthase (eNOS), leading to increased superoxide radical anion and decreased NO production thereby endothelial dysfunction. Arg-II but not Arg-I is abundantly expressed in kidney and the role of Arg-II in CKD is uncertain and controversial. We aimed to investigate the role of Arg-II in renal damage associated with diet-induced obesity mouse model. Wild type (WT) C57BL/6 mice and mice deficient in Arg-II gene (Arg-II-/-) were fed with either a normal chow (NC) or a high-fat-diet (HFD) for 14 weeks (starting at the age of 7 weeks) to induce obesity. In WT mice, HFD feeding caused frequent renal lipid accumulation, enhancement of renal reactive oxygen species (ROS) levels which could be attenuated by a NOS inhibitor, suggesting uncoupling of NOS in kidney. HFD feeding also significantly augmented renal Arg-II expression and activity. All the alterations in the kidney under HFD feeding were reduced in Arg-II-/- mice. Moreover, mesangial expansion as analyzed by Periodic Acid Schiff (PAS) staining and renal expression of vascular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in HFD-fed WT mouse assessed by immunoblotting were reduced in the HFD-fed Arg-II-/- mice, although there was no significant difference in body weight and renal weight/body weight ratio between the WT and Arg-II-/- mice. Thus, Arg-II expression/activity is enhanced in kidney of diet-induced obesity mice. Genetic targeting of Arg-II prevents renal damage associated with obesity, suggesting an important role of Arg-II in obesity-associated renal disease development.


Body composition-derived BMI cut-offs for overweight and obesity in ethnic Indian and Creole urban children of Mauritius.

  • Harris Ramuth‎ et al.
  • The British journal of nutrition‎
  • 2020‎

It is increasingly recognised that the use of BMI cut-off points for diagnosing obesity (OB) and proxy measures for body fatness in a given population needs to take into account the potential impact of ethnicity on the BMI-fat % relationship in order to avoid adiposity status misclassification. This relationship was studied here in 377 Mauritian schoolchildren (200 boys and 177 girls, aged 7-13 years) belonging to the two main ethnic groups: Indian (South Asian descent) and Creole (African/Malagasy descent), with body composition assessed using an isotopic 2H dilution technique as reference. The results indicate that for the same BMI, Indians have more body fat (and less lean mass) than Creoles among both boys and girls: linear regression analysis revealed significantly higher body fat % by 4-5 units (P < 0·001) in Indians than in Creoles across a wide range of BMI (11·6-34·2 kg/m2) and body fat % (5-52 %). By applying Deurenberg's Caucasian-based equation to predict body fat % from WHO-defined BMI thresholds for overweight (OW) and OB, and by recalculating the equivalent BMI values using a Mauritian-specific equation, it is shown that the WHO BMI cut-offs for OB and OW would need to be lowered by 4·6-5·9 units in Indian and 2·0-3·7 units in Creole children in the 7-13-year-old age group. These results have major implications for ethnic-based population research towards improving the early diagnosis of excess adiposity in this multi-ethnic population known to be at high risk for later development of type 2 diabetes and CVD.


Cardiovascular and Metabolic Responses to the Ingestion of Caffeinated Herbal Tea: Drink It Hot or Cold?

  • Claire Maufrais‎ et al.
  • Frontiers in physiology‎
  • 2018‎

Aim: Tea is usually consumed at two temperatures (as hot tea or as iced tea). However, the importance of drink temperature on the cardiovascular system and on metabolism has not been thoroughly investigated. The purpose of this study was to compare the cardiovascular, metabolic and cutaneous responses to the ingestion of caffeinated herbal tea (Yerba Mate) at cold or hot temperature in healthy young subjects. We hypothesized that ingestion of cold tea induces a higher increase in energy expenditure than hot tea without eliciting any negative effects on the cardiovascular system. Methods: Cardiovascular, metabolic and cutaneous responses were analyzed in 23 healthy subjects (12 men and 11 women) sitting comfortably during a 30-min baseline and 90 min following the ingestion of 500 mL of an unsweetened Yerba Mate tea ingested over 5 min either at cold (~3°C) or hot (~55°C) temperature, according to a randomized cross-over design. Results: Averaged over the 90 min post-drink ingestion and compared to hot tea, cold tea induced (1) a decrease in heart rate (cold tea: -5 ± 1 beats.min-1; hot tea: -1 ± 1 beats.min-1, p < 0.05), double product, skin blood flow and hand temperature and (2) an increase in baroreflex sensitivity, fat oxidation and energy expenditure (cold tea: +8.3%; hot tea: +3.7%, p < 0.05). Averaged over the 90 min post-drink ingestion, we observed no differences of tea temperature on cardiac output work and mean blood pressure responses. Conclusion: Ingestion of an unsweetened caffeinated herbal tea at cold temperature induced a greater stimulation of thermogenesis and fat oxidation than hot tea while decreasing cardiac load as suggested by the decrease in the double product. Further experiments are needed to evaluate the clinical impact of unsweetened caffeinated herbal tea at a cold temperature for weight control.


Cardiovascular and Cutaneous Responses to the Combination of Alcohol and Soft Drinks: The Way to Orthostatic Intolerance?

  • Claire Maufrais‎ et al.
  • Frontiers in physiology‎
  • 2017‎

Aim: Acute ingestion of alcohol is often accompanied by cardiovascular dysregulation, malaise and even syncope. The full hemodynamic and cutaneous responses to the combination of alcohol and sugar (i.e., alcopops), a common combination in young people, and the mechanisms for the propensity to orthostatic intolerance are not well established. Thus, the purpose of this study was to evaluate the cardiovascular and cutaneous responses to alcopops in young subjects. Methods: Cardiovascular and cutaneous responses were assessed in 24 healthy young subjects (12 men, 12 women) sitting comfortably and during prolonged active standing with a 30-min baseline and 130 min following ingestion of 400 mL of either: water, water + 48 g sugar, water + vodka (1.28 mL.kg-1 of body weight, providing 0.4 g alcohol.kg-1), water + sugar + vodka, according to a randomized cross-over design. Results: Compared to alcohol alone, vodka + sugar induced a lower breath alcohol concentration (BrAC), blood pressure and total peripheral resistance (p < 0.05), a higher cardiac output and heart rate (p < 0.05) both in sitting position and during active standing. In sitting position vodka + sugar consumption also led to a greater increase in skin blood flow and hand temperature (p < 0.05) and a decrease in baroreflex sensitivity (p < 0.05). We observed similar results between men and women both in sitting position and during active standing. Conclusion: Despite lower BrAC, ingestion of alcopops induced acute vasodilation and hypotension in sitting position and an encroach of the hemodynamic reserve during active standing. Even if subjects did not feel any signs of syncope these results could be of clinical importance with higher doses of alcohol or if combined to other hypotensive challenges.


Early and Late Cardiovascular and Metabolic Responses to Mixed Wine: Effect of Drink Temperature.

  • Delphine Sarafian‎ et al.
  • Frontiers in physiology‎
  • 2018‎

Aim: Red wine is usually ingested as an unmixed drink. However, mixtures of wine with juices and/or sucrose (mixed wine) are becoming more and more popular and could be ingested at either cold or hot temperature. Although the temperature effects on the cardiovascular system have been described for water and tea, with greater energy expenditure (EE) and lower cardiac workload with a colder drink, little information is available on the impact of temperature of alcoholic beverages on alcoholemia and cardiometabolic parameters. The purpose of the present study was to compare the acute cardiovascular and metabolic changes in response to mixed wine ingested at a cold or at a hot temperature. Methods: In a randomized crossover design, 14 healthy young adults (seven men and seven women) were assigned to cold or hot mixed wine ingestion. Continuous cardiovascular, metabolic, and cutaneous monitoring was performed in a comfortable sitting position during a 30-min baseline and for 120 min after ingesting 400 ml of mixed wine, with the alcohol content adjusted to provide 0.4 g ethanol/kg of body weight and drunk at either cold (3°C) or hot (55°C) temperature. Breath alcohol concentration was measured intermittently throughout the study. Results: Overall, alcoholemia was not altered by drink temperature, with a tendency toward greater values in women compared to men. Early responses to mixed wine ingestion (0-20 min) indicated that cold drink transiently increased mean blood pressure (BP), cardiac vagal tone, and decreased skin blood flow (SkBf) whereas hot drink did not change BP, decreased vagal tone, and increased SkBf. Both cold and hot mixed wine led to increases in EE and reductions in respiratory quotient. Late responses (60-120 min) led to similar cardiovascular and metabolic changes at both drink temperatures. Conclusion: The magnitude and/or the directional change of most of the study variables differed during the first 20 min following ingestion and may be related to drink temperature. By contrast, late changes in cardiometabolic outcomes were similar between cold and hot wine ingestion, underlying the typical effect of alcohol and sugar intake on the cardiovascular system.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: