Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Ancient balancing selection at tan underlies female colour dimorphism in Drosophila erecta.

  • Amir Yassin‎ et al.
  • Nature communications‎
  • 2016‎

Dimorphic traits are ubiquitous in nature, but the evolutionary factors leading to dimorphism are largely unclear. We investigate a potential case of sexual mimicry in Drosophila erecta, in which females show contrasting resemblance to males. We map the genetic basis of this sex-limited colour dimorphism to a region containing the gene tan. We find a striking signal of ancient balancing selection at the 'male-specific enhancer' of tan, with exceptionally high sequence divergence between light and dark alleles, suggesting that this dimorphism has been adaptively maintained for millions of years. Using transgenic reporter assays, we confirm that these enhancer alleles encode expression differences that are predicted to generate this pigmentation dimorphism. These results are compatible with the theoretical prediction that divergent phenotypes maintained by selection can evolve simple genetic architectures.


An investigation of Y chromosome incorporations in 400 species of Drosophila and related genera.

  • Eduardo G Dupim‎ et al.
  • PLoS genetics‎
  • 2018‎

Y chromosomes are widely believed to evolve from a normal autosome through a process of massive gene loss (with preservation of some male genes), shaped by sex-antagonistic selection and complemented by occasional gains of male-related genes. The net result of these processes is a male-specialized chromosome. This might be expected to be an irreversible process, but it was found in 2005 that the Drosophila pseudoobscura Y chromosome was incorporated into an autosome. Y chromosome incorporations have important consequences: a formerly male-restricted chromosome reverts to autosomal inheritance, and the species may shift from an XY/XX to X0/XX sex-chromosome system. In order to assess the frequency and causes of this phenomenon we searched for Y chromosome incorporations in 400 species from Drosophila and related genera. We found one additional large scale event of Y chromosome incorporation, affecting the whole montium subgroup (40 species in our sample); overall 13% of the sampled species (52/400) have Y incorporations. While previous data indicated that after the Y incorporation the ancestral Y disappeared as a free chromosome, the much larger data set analyzed here indicates that a copy of the Y survived as a free chromosome both in montium and pseudoobscura species, and that the current Y of the pseudoobscura lineage results from a fusion between this free Y and the neoY. The 400 species sample also showed that the previously suggested causal connection between X-autosome fusions and Y incorporations is, at best, weak: the new case of Y incorporation (montium) does not have X-autosome fusion, whereas nine independent cases of X-autosome fusions were not followed by Y incorporations. Y incorporation is an underappreciated mechanism affecting Y chromosome evolution; our results show that at least in Drosophila it plays a relevant role and highlight the need of similar studies in other groups.


A nonrandom subset of olfactory genes is associated with host preference in the fruit fly Drosophila orena.

  • Aaron A Comeault‎ et al.
  • Evolution letters‎
  • 2017‎

Specialization onto different host plants has been hypothesized to be a major driver of diversification in insects, and traits controlling olfaction have been shown to play a fundamental role in host preferences. A diverse set of olfactory genes control olfactory traits in insects, and it remains unclear whether specialization onto different hosts is likely to involve a nonrandom subset of these genes. Here, we test the role of olfactory genes in a novel case of specialization in Drosophila orena. We report the first population-level sample of D. orena on the West African island of Bioko, since its initial collection in Cameroon in 1975, and use field experiments and behavioral assays to show that D. orena has evolved a strong preference for waterberry (Syzygium staudtii). We then show that a nonrandom subset of genes controlling olfaction--those controlling odorant-binding and chemosensory proteins--have an enriched signature of positive selection relative to the rest of the D. orena genome. By comparing signatures of positive selection on olfactory genes between D. orena and its sister species, D. erecta we show that odorant-binding and chemosensory have evidence of positive selection in both species; however, overlap in the specific genes with evidence of selection in these two classes is not greater than expected by chance. Finally, we use quantitative complementation tests to confirm a role for seven olfactory loci in D. orena's preference for waterberry fruit. Together, our results suggest that D. orena and D. erecta have specialized onto different host plants through convergent evolution at the level of olfactory gene family, but not at specific olfactory genes.


Resolving between novelty and homology in the rapidly evolving phallus of Drosophila.

  • Gavin R Rice‎ et al.
  • Journal of experimental zoology. Part B, Molecular and developmental evolution‎
  • 2023‎

The genitalia present some of the most rapidly evolving anatomical structures in the animal kingdom, possessing a variety of parts that can distinguish recently diverged species. In the Drosophila melanogaster group, the phallus is adorned with several processes, pointed outgrowths, that are similar in size and shape between species. However, the complex three-dimensional nature of the phallus can obscure the exact connection points of each process. Previous descriptions based upon adult morphology have primarily assigned phallic processes by their approximate positions in the phallus and have remained largely agnostic regarding their homology relationships. In the absence of clearly identified homology, it can be challenging to model when each structure first evolved. Here, we employ a comparative developmental analysis of these processes in eight members of the melanogaster species group to precisely identify the tissue from which each process forms. Our results indicate that adult phallic processes arise from three pupal primordia in all species. We found that in some cases the same primordia generate homologous structures whereas in other cases, different primordia produce phenotypically similar but remarkably non-homologous structures. This suggests that the same gene regulatory network may have been redeployed to different primordia to induce phenotypically similar traits. Our results highlight how traits diversify and can be redeployed, even at short evolutionary scales.


Correlated Evolution of Two Copulatory Organs via a Single cis-Regulatory Nucleotide Change.

  • Olga Nagy‎ et al.
  • Current biology : CB‎
  • 2018‎

Diverse traits often covary between species [1-3]. The possibility that a single mutation could contribute to the evolution of several characters between species [3] is rarely investigated as relatively few cases are dissected at the nucleotide level. Drosophila santomea has evolved additional sex comb sensory teeth on its legs and has lost two sensory bristles on its genitalia. We present evidence that a single nucleotide substitution in an enhancer of the scute gene contributes to both changes. The mutation alters a binding site for the Hox protein Abdominal-B in the developing genitalia, leading to bristle loss, and for another factor in the developing leg, leading to bristle gain. Our study suggests that morphological evolution between species can occur through a single nucleotide change affecting several sexually dimorphic traits. VIDEO ABSTRACT.


A morphological trait involved in reproductive isolation between Drosophila sister species is sensitive to temperature.

  • Alexandre E Peluffo‎ et al.
  • Ecology and evolution‎
  • 2021‎

Male genitalia are usually extremely divergent between closely related species, but relatively constant within one species. Here we examine the effect of temperature on the shape of the ventral branches, a male genital structure involved in reproductive isolation, in the sister species Drosophila santomea and Drosophila yakuba. We designed a semi-automatic measurement machine learning pipeline that can reliably identify curvatures and landmarks based on manually digitized contours of the ventral branches. With this method, we observed that temperature does not affect ventral branches in D. yakuba but that in D. santomea ventral branches tend to morph into a D. yakuba-like shape at lower temperature. We found that male genitalia structures involved in reproductive isolation can be relatively variable within one species and can resemble the shape of closely related species' genitalia through plasticity to temperature. Our results suggest that reproductive isolation mechanisms can be dependent on the environmental context.


The Rate of Evolution of Postmating-Prezygotic Reproductive Isolation in Drosophila.

  • David A Turissini‎ et al.
  • Molecular biology and evolution‎
  • 2018‎

Reproductive isolation is an intrinsic aspect of species formation. For that reason, the identification of the precise isolating traits, and the rates at which they evolve, is crucial to understanding how species originate and persist. Previous work has measured the rates of evolution of prezygotic and postzygotic barriers to gene flow, yet no systematic analysis has studied the rates of evolution of postmating-prezygotic (PMPZ) barriers. We measured the magnitude of two barriers to gene flow that act after mating occurs but before fertilization. We also measured the magnitude of a premating barrier (female mating rate in nonchoice experiments) and two postzygotic barriers (hybrid inviability and hybrid sterility) for all pairwise crosses of all nine known extant species within the melanogaster subgroup. Our results indicate that PMPZ isolation evolves faster than hybrid inviability but slower than premating isolation. Next, we partition postzygotic isolation into different components and find that, as expected, hybrid sterility evolves faster than hybrid inviability. These results lend support for the hypothesis that, in Drosophila, reproductive isolation mechanisms (RIMs) that act early in reproduction (or in development) tend to evolve faster than those that act later in the reproductive cycle. Finally, we tested whether there was evidence for reinforcing selection at any RIM. We found no evidence for generalized evolution of reproductive isolation via reinforcement which indicates that there is no pervasive evidence of this evolutionary process. Our results indicate that PMPZ RIMs might have important evolutionary consequences in initiating speciation and in the persistence of new species.


The pdm3 Locus Is a Hotspot for Recurrent Evolution of Female-Limited Color Dimorphism in Drosophila.

  • Amir Yassin‎ et al.
  • Current biology : CB‎
  • 2016‎

Sex-limited polymorphisms are an intriguing form of sexual dimorphism that offer unique opportunities to reconstruct the evolutionary changes that decouple male and female traits encoded by a shared genome. We investigated the genetic basis of a Mendelian female-limited color dimorphism (FLCD) that segregates in natural populations of more than 20 species of the Drosophila montium subgroup. In these species, females have alternative abdominal color morphs, light and dark, whereas males have only one color morph in each species. A comprehensive molecular phylogeny of the montium subgroup supports multiple origins of FLCD. Despite this, we mapped FLCD to the same locus in four distantly related species-the transcription factor POU domain motif 3 (pdm3), which acts as a repressor of abdominal pigmentation in D. melanogaster. In D. serrata, FLCD maps to a structural variant in the first intron of pdm3; however, this variant is not found in the three other species-D. kikkawai, D. leontia, and D. burlai-and sequence analysis strongly suggests the pdm3 alleles responsible for FLCD originated independently at least three times. We propose that cis-regulatory changes in pdm3 form sexually dimorphic and monomorphic alleles that segregate within species and are preserved, at least in one species, by structural variation. Surprisingly, pdm3 has not been implicated in the evolution of sex-specific pigmentation outside the montium subgroup, suggesting that the genetic paths to sexual dimorphism may be constrained within a clade but variable across clades.


Widespread introgression across a phylogeny of 155 Drosophila genomes.

  • Anton Suvorov‎ et al.
  • Current biology : CB‎
  • 2022‎

Genome-scale sequence data have invigorated the study of hybridization and introgression, particularly in animals. However, outside of a few notable cases, we lack systematic tests for introgression at a larger phylogenetic scale across entire clades. Here, we leverage 155 genome assemblies from 149 species to generate a fossil-calibrated phylogeny and conduct multilocus tests for introgression across 9 monophyletic radiations within the genus Drosophila. Using complementary phylogenomic approaches, we identify widespread introgression across the evolutionary history of Drosophila. Mapping gene-tree discordance onto the phylogeny revealed that both ancient and recent introgression has occurred across most of the 9 clades that we examined. Our results provide the first evidence of introgression occurring across the evolutionary history of Drosophila and highlight the need to continue to study the evolutionary consequences of hybridization and introgression in this genus and across the tree of life.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: