Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

TAT-MeCP2 protein variants rescue disease phenotypes in human and mouse models of Rett syndrome.

  • Hannes Steinkellner‎ et al.
  • International journal of biological macromolecules‎
  • 2022‎

Rett syndrome (RTT) is a neurodevelopmental disorder caused by pathogenic variants leading to functional impairment of the MeCP2 protein. Here, we used purified recombinant MeCP2e1 and MeCP2e2 protein variants fused to a TAT protein transduction domain (PTD) to evaluate their transduction ability into RTT patient-derived fibroblasts and the ability to carry out their cellular function. We then assessed their transduction ability and therapeutic effects in a RTT mouse model. In vitro, TAT-MeCP2e2-eGFP reversed the pathological hyperacetylation of histones H3K9 and H4K16, a hallmark of abolition of MeCP2 function. In vivo, intraperitoneal administration of TAT-MeCP2e1 and TAT-MeCP2e2 extended the lifespan of Mecp2-/y mice by >50%. This was accompanied by rescue of hippocampal CA2 neuron size in animals treated with TAT-MeCP2e1. Taken together, these findings provide a strong indication that recombinant TAT-MeCP2 can reach mouse brains following peripheral injection and can ameliorate the phenotype of RTT mouse models. Thus, our study serves as a first step in the development of a potentially novel RTT therapy.


Mild overexpression of Mecp2 in mice causes a higher susceptibility toward seizures.

  • Chiranjeevi Bodda‎ et al.
  • The American journal of pathology‎
  • 2013‎

An intriguing finding about the gene encoding methyl-CpG binding protein 2 (MeCP2) is that the loss-of-function mutations cause Rett syndrome and duplication (gain-of-function) of MECP2 leads to another neurological disorder termed MECP2 duplication syndrome. To ensure proper neurodevelopment, a precise regulation of MeCP2 expression is critical, and any gain or loss of MeCP2 over a narrow threshold level may lead to postnatal neurological impairment. To evaluate MeCP2 dosage effects, we generated Mecp2(WT_EGFP) transgenic (TG) mouse in which MeCP2 (endogenous plus TG) is mildly overexpressed (approximately 1.5×). The TG MeCP2(WT_EGFP) fusion protein is functionally active, as cross breeding of these mice with Mecp2 knockout mice led to alleviation of major phenotypes in the null mutant mice, including premature lethality. To characterize the Mecp2(WT_EGFP) mouse model, we performed an extensive battery of behavioral tests, which revealed that these mice manifest increased aggressiveness and higher pentylenetetrazole (PTZ)-induced seizure propensity. Evaluation of neuronal parameters revealed a reduction in the number of tertiary branching sites and increased spine density in Mecp2(WT_EGFP) transgenic (TG) neurons. Treatment of TG neurons with epileptogenic compound-PTZ led to a marked increase in amplitude and frequency of calcium spikes. Based on our ex vivo and in vivo data, we conclude that epileptic seizures are manifested as the first symptom when MeCP2 is mildly overexpressed in mice.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: