Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

HDAC5 and Its Target Gene, Npas4, Function in the Nucleus Accumbens to Regulate Cocaine-Conditioned Behaviors.

  • Makoto Taniguchi‎ et al.
  • Neuron‎
  • 2017‎

Individuals suffering from substance-use disorders develop strong associations between the drug's rewarding effects and environmental cues, creating powerful, enduring triggers for relapse. We found that dephosphorylated, nuclear histone deacetylase 5 (HDAC5) in the nucleus accumbens (NAc) reduced cocaine reward-context associations and relapse-like behaviors in a cocaine self-administration model. We also discovered that HDAC5 associates with an activity-sensitive enhancer of the Npas4 gene and negatively regulates NPAS4 expression. Exposure to cocaine and the test chamber induced rapid and transient NPAS4 expression in a small subpopulation of FOS-positive neurons in the NAc. Conditional deletion of Npas4 in the NAc significantly reduced cocaine conditioned place preference and delayed learning of the drug-reinforced action during cocaine self-administration, without affecting cue-induced reinstatement of drug seeking. These data suggest that HDAC5 and NPAS4 in the NAc are critically involved in reward-relevant learning and memory processes and that nuclear HDAC5 limits reinstatement of drug seeking independent of NPAS4.


NPAS4 in the medial prefrontal cortex mediates chronic social defeat stress-induced anhedonia-like behavior and reductions in excitatory synapses.

  • Brandon W Hughes‎ et al.
  • eLife‎
  • 2023‎

Chronic stress can produce reward system deficits (i.e., anhedonia) and other common symptoms associated with depressive disorders, as well as neural circuit hypofunction in the medial prefrontal cortex (mPFC). However, the molecular mechanisms by which chronic stress promotes depressive-like behavior and hypofrontality remain unclear. We show here that the neuronal activity-regulated transcription factor, NPAS4, in the mPFC is regulated by chronic social defeat stress (CSDS), and it is required in this brain region for CSDS-induced changes in sucrose preference and natural reward motivation in the mice. Interestingly, NPAS4 is not required for CSDS-induced social avoidance or anxiety-like behavior. We also find that mPFC NPAS4 is required for CSDS-induced reductions in pyramidal neuron dendritic spine density, excitatory synaptic transmission, and presynaptic function, revealing a relationship between perturbation in excitatory synaptic transmission and the expression of anhedonia-like behavior in the mice. Finally, analysis of the mice mPFC tissues revealed that NPAS4 regulates the expression of numerous genes linked to glutamatergic synapses and ribosomal function, the expression of upregulated genes in CSDS-susceptible animals, and differentially expressed genes in postmortem human brains of patients with common neuropsychiatric disorders, including depression. Together, our findings position NPAS4 as a key mediator of chronic stress-induced hypofrontal states and anhedonia-like behavior.


Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) regulates anxiety- and novelty-related behaviors.

  • Rachel D Penrod‎ et al.
  • Genes, brain, and behavior‎
  • 2019‎

The activity-regulated cytoskeleton-associated protein (Arc, also known as Arg3.1) regulates glutamatergic synapse plasticity and has been linked to neuropsychiatric illness; however, its role in behaviors associated with mood and anxiety disorders remains unclear. We find that stress upregulates Arc expression in the adult mouse nucleus accumbens (NAc)-a brain region implicated in mood and anxiety behaviors. Global Arc knockout mice have altered AMPAR-subunit surface levels in the adult NAc, and the Arc-deficient mice show reductions in anxiety-like behavior, deficits in social novelty preference, and antidepressive-like behavior. Viral-mediated expression of Arc in the adult NAc of male, global Arc KO mice restores normal levels of anxiety-like behavior in the elevated plus maze (EPM). Consistent with this finding, viral-mediated reduction of Arc in the adult NAc reduces anxiety-like behavior in male, but not female, mice in the EPM. NAc-specific reduction of Arc also produced significant deficits in both object and social novelty preference tasks. Together our findings indicate that Arc is essential for regulating normal mood- and anxiety-related behaviors and novelty discrimination, and that Arc's function within the adult NAc contributes to these behavioral effects.


MEF2C regulates cortical inhibitory and excitatory synapses and behaviors relevant to neurodevelopmental disorders.

  • Adam J Harrington‎ et al.
  • eLife‎
  • 2016‎

Numerous genetic variants associated with MEF2C are linked to autism, intellectual disability (ID) and schizophrenia (SCZ) - a heterogeneous collection of neurodevelopmental disorders with unclear pathophysiology. MEF2C is highly expressed in developing cortical excitatory neurons, but its role in their development remains unclear. We show here that conditional embryonic deletion of Mef2c in cortical and hippocampal excitatory neurons (Emx1-lineage) produces a dramatic reduction in cortical network activity in vivo, due in part to a dramatic increase in inhibitory and a decrease in excitatory synaptic transmission. In addition, we find that MEF2C regulates E/I synapse density predominantly as a cell-autonomous, transcriptional repressor. Analysis of differential gene expression in Mef2c mutant cortex identified a significant overlap with numerous synapse- and autism-linked genes, and the Mef2c mutant mice displayed numerous behaviors reminiscent of autism, ID and SCZ, suggesting that perturbing MEF2C function in neocortex can produce autistic- and ID-like behaviors in mice.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: