Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Retinal Ganglion Cell Diversity and Subtype Specification from Human Pluripotent Stem Cells.

  • Kirstin B Langer‎ et al.
  • Stem cell reports‎
  • 2018‎

Retinal ganglion cells (RGCs) are the projection neurons of the retina and transmit visual information to postsynaptic targets in the brain. While this function is shared among nearly all RGCs, this class of cell is remarkably diverse, comprised of multiple subtypes. Previous efforts have identified numerous RGC subtypes in animal models, but less attention has been paid to human RGCs. Thus, efforts of this study examined the diversity of RGCs differentiated from human pluripotent stem cells (hPSCs) and characterized defined subtypes through the expression of subtype-specific markers. Further investigation of these subtypes was achieved using single-cell transcriptomics, confirming the combinatorial expression of molecular markers associated with these subtypes, and also provided insight into more subtype-specific markers. Thus, the results of this study describe the derivation of RGC subtypes from hPSCs and will support the future exploration of phenotypic and functional diversity within human RGCs.


Development of a three-dimensional organoid model to explore early retinal phenotypes associated with Alzheimer's disease.

  • Sailee S Lavekar‎ et al.
  • Scientific reports‎
  • 2023‎

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of Aβ plaques and neurofibrillary tangles, resulting in synaptic loss and neurodegeneration. The retina is an extension of the central nervous system within the eye, sharing many structural similarities with the brain, and previous studies have observed AD-related phenotypes within the retina. Three-dimensional retinal organoids differentiated from human pluripotent stem cells (hPSCs) can effectively model some of the earliest manifestations of disease states, yet early AD-associated phenotypes have not yet been examined. Thus, the current study focused upon the differentiation of hPSCs into retinal organoids for the analysis of early AD-associated alterations. Results demonstrated the robust differentiation of retinal organoids from both familial AD and unaffected control cell lines, with familial AD retinal organoids exhibiting a significant increase in the Aβ42:Aβ40 ratio as well as phosphorylated Tau protein, characteristic of AD pathology. Further, transcriptional analyses demonstrated the differential expression of many genes and cellular pathways, including those associated with synaptic dysfunction. Taken together, the current study demonstrates the ability of retinal organoids to serve as a powerful model for the identification of some of the earliest retinal alterations associated with AD.


Enhanced mitochondrial biogenesis promotes neuroprotection in human pluripotent stem cell derived retinal ganglion cells.

  • Michelle Surma‎ et al.
  • Communications biology‎
  • 2023‎

Mitochondrial dysfunctions are widely afflicted in central nervous system (CNS) disorders with minimal understanding on how to improve mitochondrial homeostasis to promote neuroprotection. Here we have used human stem cell differentiated retinal ganglion cells (hRGCs) of the CNS, which are highly sensitive towards mitochondrial dysfunctions due to their unique structure and function, to identify mechanisms for improving mitochondrial quality control (MQC). We show that hRGCs are efficient in maintaining mitochondrial homeostasis through rapid degradation and biogenesis of mitochondria under acute damage. Using a glaucomatous Optineurin mutant (E50K) stem cell line, we show that at basal level mutant hRGCs possess less mitochondrial mass and suffer mitochondrial swelling due to excess ATP production load. Activation of mitochondrial biogenesis through pharmacological inhibition of the Tank binding kinase 1 (TBK1) restores energy homeostasis, mitigates mitochondrial swelling with neuroprotection against acute mitochondrial damage for glaucomatous E50K hRGCs, revealing a novel neuroprotection mechanism.


Astrocytes Regulate the Development and Maturation of Retinal Ganglion Cells Derived from Human Pluripotent Stem Cells.

  • Kirstin B VanderWall‎ et al.
  • Stem cell reports‎
  • 2019‎

Retinal ganglion cells (RGCs) form the connection between the eye and the brain, with this connectivity disrupted in numerous blinding disorders. Previous studies have demonstrated the ability to derive RGCs from human pluripotent stem cells (hPSCs); however, these cells exhibited some characteristics that indicated a limited state of maturation. Among the many factors known to influence RGC development in the retina, astrocytes are known to play a significant role in their functional maturation. Thus, efforts of the current study examined the functional maturation of hPSC-derived RGCs, including the ability of astrocytes to modulate this developmental timeline. Morphological and functional properties of RGCs were found to increase over time, with astrocytes significantly accelerating the functional maturation of hPSC-derived RGCs. The results of this study clearly demonstrate the functional and morphological maturation of RGCs in vitro, including the effects of astrocytes on the maturation of hPSC-derived RGCs.


Robust Differentiation of mRNA-Reprogrammed Human Induced Pluripotent Stem Cells Toward a Retinal Lineage.

  • Akshayalakshmi Sridhar‎ et al.
  • Stem cells translational medicine‎
  • 2016‎

The derivation of human induced pluripotent stem cells (hiPSCs) from patient-specific sources has allowed for the development of novel approaches to studies of human development and disease. However, traditional methods of generating hiPSCs involve the risks of genomic integration and potential constitutive expression of pluripotency factors and often exhibit low reprogramming efficiencies. The recent description of cellular reprogramming using synthetic mRNA molecules might eliminate these shortcomings; however, the ability of mRNA-reprogrammed hiPSCs to effectively give rise to retinal cell lineages has yet to be demonstrated. Thus, efforts were undertaken to test the ability and efficiency of mRNA-reprogrammed hiPSCs to yield retinal cell types in a directed, stepwise manner. hiPSCs were generated from human fibroblasts via mRNA reprogramming, with parallel cultures of isogenic human fibroblasts reprogrammed via retroviral delivery of reprogramming factors. New lines of mRNA-reprogrammed hiPSCs were established and were subsequently differentiated into a retinal fate using established protocols in a directed, stepwise fashion. The efficiency of retinal differentiation from these lines was compared with retroviral-derived cell lines at various stages of development. On differentiation, mRNA-reprogrammed hiPSCs were capable of robust differentiation to a retinal fate, including the derivation of photoreceptors and retinal ganglion cells, at efficiencies often equal to or greater than their retroviral-derived hiPSC counterparts. Thus, given that hiPSCs derived through mRNA-based reprogramming strategies offer numerous advantages owing to the lack of genomic integration or constitutive expression of pluripotency genes, such methods likely represent a promising new approach for retinal stem cell research, in particular, those for translational applications.


Astrocytes modulate neurodegenerative phenotypes associated with glaucoma in OPTN(E50K) human stem cell-derived retinal ganglion cells.

  • Cátia Gomes‎ et al.
  • Stem cell reports‎
  • 2022‎

Although the degeneration of retinal ganglion cells (RGCs) is a primary characteristic of glaucoma, astrocytes also contribute to their neurodegeneration in disease states. Although studies often explore cell-autonomous aspects of RGC neurodegeneration, a more comprehensive model of glaucoma should take into consideration interactions between astrocytes and RGCs. To explore this concept, RGCs and astrocytes were differentiated from human pluripotent stem cells (hPSCs) with a glaucoma-associated OPTN(E50K) mutation along with corresponding isogenic controls. Initial results indicated significant changes in OPTN(E50K) astrocytes, including evidence of autophagy dysfunction. Subsequently, co-culture experiments demonstrated that OPTN(E50K) astrocytes led to neurodegenerative properties in otherwise healthy RGCs, while healthy astrocytes rescued some neurodegenerative features in OPTN(E50K) RGCs. These results are the first to identify disease phenotypes in OPTN(E50K) astrocytes, including how their modulation of RGCs is affected. Moreover, these results support the concept that astrocytes could offer a promising target for therapeutic intervention in glaucoma.


Extension of retinofugal projections in an assembled model of human pluripotent stem cell-derived organoids.

  • Clarisse M Fligor‎ et al.
  • Stem cell reports‎
  • 2021‎

The development of the visual system involves the coordination of spatial and temporal events to specify the organization of varied cell types, including the elongation of axons from retinal ganglion cells (RGCs) to post-synaptic targets in the brain. Retinal organoids recapitulate many features of retinal development, yet have lacked downstream targets into which RGC axons extend, limiting the ability to model projections of the human visual system. To address these issues, retinal organoids were generated and organized into an in vitro assembloid model of the visual system with cortical and thalamic organoids. RGCs responded to environmental cues and extended axons deep into assembloids, modeling the projections of the visual system. In addition, RGC survival was enhanced in long-term assembloids, overcoming prior limitations of retinal organoids in which RGCs are lost. Overall, these approaches will facilitate studies of human visual system development, as well as diseases or injuries to this critical pathway.


Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs.

  • Xiufeng Zhong‎ et al.
  • Nature communications‎
  • 2014‎

Many forms of blindness result from the dysfunction or loss of retinal photoreceptors. Induced pluripotent stem cells (iPSCs) hold great potential for the modelling of these diseases or as potential therapeutic agents. However, to fulfill this promise, a remaining challenge is to induce human iPSC to recreate in vitro key structural and functional features of the native retina, in particular the presence of photoreceptors with outer-segment discs and light sensitivity. Here we report that hiPSC can, in a highly autonomous manner, recapitulate spatiotemporally each of the main steps of retinal development observed in vivo and form three-dimensional retinal cups that contain all major retinal cell types arranged in their proper layers. Moreover, the photoreceptors in our hiPSC-derived retinal tissue achieve advanced maturation, showing the beginning of outer-segment disc formation and photosensitivity. This success brings us one step closer to the anticipated use of hiPSC for disease modelling and open possibilities for future therapies.


Differential susceptibility of retinal ganglion cell subtypes in acute and chronic models of injury and disease.

  • Kirstin B VanderWall‎ et al.
  • Scientific reports‎
  • 2020‎

Retinal ganglion cells (RGCs) are a heterogeneous population of neurons, comprised of numerous subtypes that work synchronously to transmit visual information to the brain. In blinding disorders such as glaucoma, RGCs are the main cell type to degenerate and lead to loss of vision. Previous studies have identified and characterized a variety of RGC subtypes in animal models, although only a handful of studies demonstrate the differential loss of these RGC subtypes in response to disease or injury. Thus, efforts of the current study utilized both chronic (bead occlusion) and acute (optic nerve crush, ONC) rat models to characterize disease response and differential loss of RGC subtypes. Bead occlusion and ONC retinas demonstrated significant RGC loss, glial reactivity and apoptosis compared to control retinas. Importantly, bead occlusion and ONC retinas resulted in differential subtype-specific loss of RGCs, with a high susceptibility for alpha- and direction selective-RGCs and preferential survival of ipRGCs. Results of this study serve as an important foundation for future experiments focused on the mechanisms resulting in the loss of RGCs in optic neuropathies, as well as the development of targeted therapeutics for RGC subtype-specific neuroprotection.


Three-Dimensional Retinal Organoids Facilitate the Investigation of Retinal Ganglion Cell Development, Organization and Neurite Outgrowth from Human Pluripotent Stem Cells.

  • Clarisse M Fligor‎ et al.
  • Scientific reports‎
  • 2018‎

Retinal organoids are three-dimensional structures derived from human pluripotent stem cells (hPSCs) which recapitulate the spatial and temporal differentiation of the retina, serving as effective in vitro models of retinal development. However, a lack of emphasis has been placed upon the development and organization of retinal ganglion cells (RGCs) within retinal organoids. Thus, initial efforts were made to characterize RGC differentiation throughout early stages of organoid development, with a clearly defined RGC layer developing in a temporally-appropriate manner expressing a complement of RGC-associated markers. Beyond studies of RGC development, retinal organoids may also prove useful for cellular replacement in which extensive axonal outgrowth is necessary to reach post-synaptic targets. Organoid-derived RGCs could help to elucidate factors promoting axonal outgrowth, thereby identifying approaches to circumvent a formidable obstacle to RGC replacement. As such, additional efforts demonstrated significant enhancement of neurite outgrowth through modulation of both substrate composition and growth factor signaling. Additionally, organoid-derived RGCs exhibited diverse phenotypes, extending elaborate growth cones and expressing numerous guidance receptors. Collectively, these results establish retinal organoids as a valuable tool for studies of RGC development, and demonstrate the utility of organoid-derived RGCs as an effective platform to study factors influencing neurite outgrowth from organoid-derived RGCs.


Retinal Ganglion Cells With a Glaucoma OPTN(E50K) Mutation Exhibit Neurodegenerative Phenotypes when Derived from Three-Dimensional Retinal Organoids.

  • Kirstin B VanderWall‎ et al.
  • Stem cell reports‎
  • 2020‎

Retinal ganglion cells (RGCs) serve as the connection between the eye and the brain, with this connection disrupted in glaucoma. Numerous cellular mechanisms have been associated with glaucomatous neurodegeneration, and useful cellular models of glaucoma allow for the precise analysis of degenerative phenotypes. Human pluripotent stem cells (hPSCs) serve as powerful tools for studying human disease, particularly cellular mechanisms underlying neurodegeneration. Thus, efforts focused upon hPSCs with an E50K mutation in the Optineurin (OPTN) gene, a leading cause of inherited forms of glaucoma. CRISPR/Cas9 gene editing introduced the OPTN(E50K) mutation into existing lines of hPSCs, as well as generating isogenic controls from patient-derived lines. RGCs differentiated from OPTN(E50K) hPSCs exhibited numerous neurodegenerative deficits, including neurite retraction, autophagy dysfunction, apoptosis, and increased excitability. These results demonstrate the utility of OPTN(E50K) RGCs as an in vitro model of neurodegeneration, with the opportunity to develop novel therapeutic approaches for glaucoma.


Autophagy disruption reduces mTORC1 activation leading to retinal ganglion cell neurodegeneration associated with glaucoma.

  • Kang-Chieh Huang‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Autophagy dysfunction has been associated with several neurodegenerative diseases including glaucoma, characterized by the degeneration of retinal ganglion cells (RGCs). However, the mechanisms by which autophagy dysfunction promotes RGC damage remain unclear. Here, we hypothesized that perturbation of the autophagy pathway results in increased autophagic demand, thereby downregulating signaling through mammalian target of rapamycin complex 1 (mTORC1), a negative regulator of autophagy, contributing to the degeneration of RGCs. We identified an impairment of autophagic-lysosomal degradation and decreased mTORC1 signaling via activation of the stress sensor adenosine monophosphate-activated protein kinase (AMPK), along with subsequent neurodegeneration in RGCs differentiated from human pluripotent stem cells (hPSCs) with a glaucoma-associated variant of Optineurin (OPTN-E50K). Similarly, the microbead occlusion model of glaucoma resulting in ocular hypertension also exhibited autophagy disruption and mTORC1 downregulation. Pharmacological inhibition of mTORC1 in hPSC-derived RGCs recapitulated disease-related neurodegenerative phenotypes in otherwise healthy RGCs, while the mTOR-independent induction of autophagy reduced protein accumulation and restored neurite outgrowth in diseased OPTN-E50K RGCs. Taken together, these results highlight an important balance between autophagy and mTORC1 signaling essential for RGC homeostasis, while disruption to these pathways contributes to neurodegenerative features in glaucoma, providing a potential therapeutic target to prevent neurodegeneration.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: