2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 83 papers

Development of Long Noncoding RNA-Based Strategies to Modulate Tissue Vascularization.

  • Jan Fiedler‎ et al.
  • Journal of the American College of Cardiology‎
  • 2015‎

Long noncoding ribonucleic acids (lncRNAs) are a subclass of regulatory noncoding ribonucleic acids for which expression and function in human endothelial cells and angiogenic processes is not well studied.


Autoimmune hepatitis in a murine autoimmune polyendocrine syndrome type 1 model is directed against multiple autoantigens.

  • Matthias Hardtke-Wolenski‎ et al.
  • Hepatology (Baltimore, Md.)‎
  • 2015‎

Autoimmune polyendocrine syndrome type 1 (APS-1) is caused by mutations of the autoimmune regulator (AIRE) gene. Mouse studies have shown that this results in defective negative selection of T cells and defective early seeding of peripheral organs with regulatory T cells (Tregs). Aire deficiency in humans and mice manifests as spontaneous autoimmunity against multiple organs, and 20% of patients develop an autoimmune hepatitis (AIH). To study AIH in APS-1, we generated a murine model of human AIH on a BALB/c mouse background, in which Aire is truncated at exon 2. A subgroup of 24% of mice is affected by AIH, characterized by lymphoplasmacytic and periportal hepatic infiltrates, autoantibodies, elevated aminotransferases, and a chronic and progressive course of disease. Disease manifestation was dependent on specific Aire mutations and the genetic background of the mice. Though intrahepatic Treg numbers were increased and hyperproliferative, the intrahepatic CD4/CD8 ratio was decreased. The targets of the adaptive autoimmune response were polyspecific and not focussed on essential autoantigens, as described for other APS-1-related autoimmune diseases. The AIH could be treated with prednisolone or adoptive transfer of polyspecific Tregs.


Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis.

  • Johan M Lorenzen‎ et al.
  • European heart journal‎
  • 2015‎

Osteopontin (OPN) is a multifunctional cytokine critically involved in cardiac fibrosis. However, the underlying mechanisms are unresolved. Non-coding RNAs are powerful regulators of gene expression and thus might mediate this process.


Therapeutic modulation of RNA-binding protein Rbm38 facilitates re-endothelialization after arterial injury.

  • Kristina Sonnenschein‎ et al.
  • Cardiovascular research‎
  • 2019‎

Delayed re-endothelialization after balloon angioplasty in patients with coronary or peripheral artery disease impairs vascular healing and leads to neointimal proliferation. In the present study, we examined the effect of RNA-binding motif protein 38 (Rbm38) during re-endothelialization in a murine model of experimental vascular injury.


Release of TcdA and TcdB from Clostridium difficile cdi 630 is not affected by functional inactivation of the tcdE gene.

  • Alexandra Olling‎ et al.
  • Microbial pathogenesis‎
  • 2012‎

The small open reading frame tcdE is located between the genes tcdA and tcdB which encode toxin A (TcdA) and B (TcdB), respectively, within the pathogenicity locus of Clostridium difficile. Sequence and structure similarities to bacteriophage-encoded holins have led to the assumption that TcdE mediates the release of the toxins from C. difficile into the extracellular environment. A TcdE-deficient C. difficile 630 strain was generated by insertional inactivation of the tcdE gene. Data revealed that TcdE does not regulate or affect growth or sporogenesis. TcdE-deficiency was accompanied by a moderately increased accumulation of TcdA and TcdB prior to sporulation in this microorganism. Interestingly, this observation did not correlate with a delayed or inhibited toxin release: inactivation of TcdE neither significantly altered kinetics of release nor the absolute level of secreted TcdA and TcdB, indicating that TcdE does not account for the pathogenicity of C. difficile strain 630. Furthermore, mass spectrometry analysis could not reveal differences in the secretome of wild type and TcdE-deficient C. difficile, indicating that TcdE did not function as a secretion system for protein release. TcdE was expressed as a 19 kDa protein in C. difficile, whereas TcdE expressed in Escherichia coli appeared as a 19 and 16 kDa protein. Expression of the short 16 kDa TcdE correlated with bacterial cell death. We conclude that TcdE does not exhibit pore-forming function in C. difficile since in these cells only the non-lytic full length 19 kDa protein is expressed.


Overexpression of preeclampsia induced microRNA-26a-5p leads to proteinuria in zebrafish.

  • Janina Müller-Deile‎ et al.
  • Scientific reports‎
  • 2018‎

So far the pathomechanism of preeclampsia in pregnancy is focussed on increased circulating levels of soluble fms-like tyrosin kinase-1 (sFLT-1) that neutralizes glomerular VEGF-A expression and prevents its signaling at the glomerular endothelium. As a result of changed glomerular VEGF-A levels endotheliosis and podocyte foot process effacement are typical morphological features of preeclampsia. Recently, microRNA-26a-5p (miR-26a-5p) was described to be also upregulated in the preeclamptic placenta. We found that miR-26a-5p targets VEGF-A expression by means of PIK3C2α in cultured human podocytes and that miR-26a-5p overexpression in zebrafish causes proteinuria, edema, glomerular endotheliosis and podocyte foot process effacement. Interestingly, recombinant zebrafish Vegf-Aa protein could rescue glomerular changes induced by miR-26a-5p. In a small pilot study, preeclamptic patients with podocyte damage identified by podocyturia, expressed significantly more urinary miR-26a-5p compared to healthy controls. Thus, functional and ultrastructural glomerular changes after miR-26a-5p overexpression can resemble the findings seen in preeclampsia and indicate a potential pathophysiological role of miR-26a-5p in addition to sFLT-1 in this disease.


MicroRNAs regulating superoxide dismutase 2 are new circulating biomarkers of heart failure.

  • Emilie Dubois-Deruy‎ et al.
  • Scientific reports‎
  • 2017‎

Although several risk factors such as infarct size have been identified, the progression of heart failure (HF) remains difficult to predict in clinical practice. Using an experimental rat model of post-myocardial infarction (MI), we previously identified 45 proteins differentially modulated during HF by proteomic analysis. This study sought to identify microRNAs (miRNAs) able to regulate these proteins and to test their relevance as biomarkers for HF. In silico bioinformatical analysis selected 13 miRNAs related to the 45 proteins previously identified. These miRNAs were analyzed in the rat and in cohorts of patients phenotyped for left ventricular remodeling (LVR). We identified that 3 miRNAs, miR-21-5p, miR-23a-3p and miR-222-3p, and their target Mn superoxide dismutase (SOD2) were significantly increased in LV and plasma of HF-rats. We found by luciferase activity a direct interaction of miR-222-3p with 3'UTR of SOD2. Transfection of human cardiomyocytes with miR-222-3p mimic or inhibitor induced respectively a decrease and an increase of SOD2 expression. Circulating levels of the 3 miRNAs and their target SOD2 were associated with high LVR post-MI in REVE-2 patients. We demonstrated for the first time the potential of microRNAs regulating SOD2 as new circulating biomarkers of HF.


Podocytes regulate the glomerular basement membrane protein nephronectin by means of miR-378a-3p in glomerular diseases.

  • Janina Müller-Deile‎ et al.
  • Kidney international‎
  • 2017‎

The pathophysiology of many proteinuric kidney diseases is poorly understood, and microRNAs (miRs) regulation of these diseases has been largely unexplored. Here, we tested whether miR-378a-3p is a novel regulator of glomerular diseases. MiR-378a-3p has two predicted targets relevant to glomerular function, the glomerular basement membrane matrix component, nephronectin (NPNT), and vascular endothelial growth factor VEGF-A. In zebrafish (Danio rerio), miR-378a-3p mimic injection or npnt knockdown by a morpholino oligomer caused an identical phenotype consisting of edema, proteinuria, podocyte effacement, and widening of the glomerular basement membrane in the lamina rara interna. Zebrafish vegf-A protein could not rescue this phenotype. However, mouse Npnt constructs containing a mutated 3'UTR region prevented the phenotype caused by miR-378a-3p mimic injection. Overexpression of miR-378a-3p in mice confirmed glomerular dysfunction in a mammalian model. Biopsies from patients with focal segmental glomerulosclerosis and membranous nephropathy had increased miR-378a-3p expression and reduced glomerular levels of NPNT. Thus, miR-378a-3p-mediated suppression of the glomerular matrix protein NPNT is a novel mechanism for proteinuria development in active glomerular diseases.


Pharmacokinetic Studies of Antisense Oligonucleotides Using MALDI-TOF Mass Spectrometry.

  • Markus Herkt‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Cardiac diseases are the most frequent causes of death in industrialized countries. Pathological remodeling of the heart muscle is caused by several etiologies such as prolonged hypertension or injuries that can lead to myocardial infarction and in serious cases also the death of the patient. The micro-RNA miR-132 has been identified as a master-switch in the development of cardiac hypertrophy and adverse remodeling. In this study, MALDI-TOF mass spectrometry (MS) was utilized to establish a robust and fast method to sensitively detect and accurately quantify anti-microRNA (antimiR) oligonucleotides in blood plasma. An antimiR oligonucleotide isolation protocol containing an ethanol precipitation step with glycogen as oligonucleotide carrier as well as a robust and reproducible MS-analysis procedure has been established. Proteinase K treatment was crucial for releasing antimiR oligonucleotides from plasma- as well as cellular proteins and reducing background derived from biological matrices. AntimiR oligonucleotide detection was achieved from samples of studies in different animal models such as mouse and pig where locked nucleic acids-(LNA)-modified antimiR oligonucleotides have been used to generate pharmacokinetic data.


E. coli primase and DNA polymerase III holoenzyme are able to bind concurrently to a primed template during DNA replication.

  • Andrea Bogutzki‎ et al.
  • Scientific reports‎
  • 2019‎

During DNA replication in E. coli, a switch between DnaG primase and DNA polymerase III holoenzyme (pol III) activities has to occur every time when the synthesis of a new Okazaki fragment starts. As both primase and the χ subunit of pol III interact with the highly conserved C-terminus of single-stranded DNA-binding protein (SSB), it had been proposed that the binding of both proteins to SSB is mutually exclusive. Using a replication system containing the origin of replication of the single-stranded DNA phage G4 (G4ori) saturated with SSB, we tested whether DnaG and pol III can bind concurrently to the primed template. We found that the addition of pol III does not lead to a displacement of primase, but to the formation of higher complexes. Even pol III-mediated primer elongation by one or several DNA nucleotides does not result in the dissociation of DnaG. About 10 nucleotides have to be added in order to displace one of the two primase molecules bound to SSB-saturated G4ori. The concurrent binding of primase and pol III is highly plausible, since even the SSB tetramer situated directly next to the 3'-terminus of the primer provides four C-termini for protein-protein interactions.


The Binary Toxin of Clostridioides difficile Alters the Proteome and Phosphoproteome of HEp-2 Cells.

  • Florian Stieglitz‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Clostridioides difficile is a major cause of nosocomial infection worldwide causing antibiotic-associated diarrhea and some cases are leading to pseudomembranous colitis. The main virulence factors are toxin A and toxin B. Hypervirulent strains of C. difficile are linked to higher mortality rates and most of these strains produce additionally the C. difficile binary toxin (CDT) that possesses two subunits, CDTa and CDTb. The latter is responsible for binding and transfer of CDTa into the cytoplasm of target cells; CDTa is an ADP ribosyltransferase catalyzing the modification of actin fibers that disturbs the actin vs microtubule balance and induces microtubule-based protrusions of the cell membrane increasing the adherence of C. difficile. The underlying mechanisms remain elusive. Thus, we performed a screening experiment using MS-based proteomics and phosphoproteomics techniques. Epithelial Hep-2 cells were treated with CDTa and CDTb in a multiplexed study for 4 and 8 h. Phosphopeptide enrichment was performed using affinity chromatography with TiO2 and Fe-NTA; for quantification, a TMT-based approach and DDA measurements were used. More than 4,300 proteins and 5,600 phosphosites were identified and quantified at all time points. Although only moderate changes were observed on proteome level, the phosphorylation level of nearly 1,100 phosphosites responded to toxin treatment. The data suggested that CSNK2A1 might act as an effector kinase after treatment with CDT. Additionally, we confirmed ADP-ribosylation on Arg-177 of actin and the kinetic of this modification for the first time.


Personalized Proteomics for Precision Diagnostics in Hearing Loss: Disease-Specific Analysis of Human Perilymph by Mass Spectrometry.

  • Heike A Schmitt‎ et al.
  • ACS omega‎
  • 2021‎

Despite a vast amount of data generated by proteomic analysis on cochlear fluid, novel clinically applicable biomarkers of inner ear diseases have not been identified hitherto. The aim of the present study was to analyze the proteome of human perilymph from cochlear implant patients, thereby identifying putative changes of the composition of the cochlear fluid perilymph due to specific diseases. Sampling of human perilymph was performed during cochlear implantation from patients with clinically or radiologically defined inner ear diseases like enlarged vestibular aqueduct (EVA; n = 14), otosclerosis (n = 10), and Ménière's disease (n = 12). Individual proteins were identified by a shotgun proteomics approach and data-dependent acquisition, thereby revealing 895 different proteins in all samples. Based on quantification values, a disease-specific protein distribution in the perilymph was demonstrated. The proteins short-chain dehydrogenase/reductase family 9C member 7 and esterase D were detected in nearly all samples of Ménière's disease patients, but not in samples of patients suffering from EVA and otosclerosis. The presence of both proteins in the inner ear tissue of adult mice and neonatal rats was validated by immunohistochemistry. Whether these proteins have the potential for a biomarker in the perilymph of Ménière's disease patients remains to be elucidated.


Serum circular RNAs act as blood-based biomarkers for hypertrophic obstructive cardiomyopathy.

  • Kristina Sonnenschein‎ et al.
  • Scientific reports‎
  • 2019‎

Hypertrophic cardiomyopathy (HCM) is one of the most common hereditary heart diseases and is associated with a high risk of sudden cardiac death. HCM is characterized by pronounced hypertrophy of cardiomyocytes, fiber disarray and development of fibrosis and can be divided into a non-obstructive (HNCM) and obstructive form (HOCM) therefore requiring personalized therapeutic therapies. In the present study, we investigated the expression patterns of several circulating circular RNAs (circRNAs) as potential biomarkers in patients with HCM. We included 64 patients with HCM and 53 healthy controls to the study and quantitatively measured the expression of a set of circRNAs already known to be associated with cardiac diseases (circDNAJC6) and/or being highly abundant in blood (circTMEM56 and circMBOAT2). Abundancy of circRNAs was then correlated to relevant clinical parameters. Serum expression levels of circRNAs DNAJC6, TMEM56 and MBOAT2 were downregulated in patients with HCM. The inverse association between circRNA levels and HCM remained unchanged even after adjusting for confounding factors. All circRNAs, evaluated separately or in combination, showed a robust discrimination capacity when comparing control subjects with HCM, HNCM or HOCM patients (AUC from 0.722 to 0.949). Two circRNAs, circTMEM56 and circDNAJC6, significantly negatively correlated with echocardiographic parameters for HOCM. Collectively, circulating circRNAs DNAJC6, TMEM56 and MBOAT2 can distinguish between healthy and HCM patients. In addition, circTMEM56 and circDNAJC6 could serve as indicators of disease severity in patients with HOCM. Thus, circRNAs emerge as novel biomarkers for HCM facilitating the clinical decision making in a personalized manner.


Bioinformatic Analysis of the Perilymph Proteome to Generate a Human Protein Atlas.

  • Alina van Dieken‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2022‎

The high complexity of the cellular architecture of the human inner ear and the inaccessibility for tissue biopsy hampers cellular and molecular analysis of inner ear disease. Sampling and analysis of perilymph may present an opportunity for improved diagnostics and understanding of human inner ear pathology. Analysis of the perilymph proteome from patients undergoing cochlear implantation was carried out revealing a multitude of proteins and patterns of protein composition that may enable characterisation of patients into subgroups. Based on existing data and databases, single proteins that are not present in the blood circulation were related to cells within the cochlea to allow prediction of which cells contribute to the individual perilymph proteome of the patients. Based on the results, we propose a human atlas of the cochlea. Finally, druggable targets within the perilymph proteome were identified. Understanding and modulating the human perilymph proteome will enable novel avenues to improve diagnosis and treatment of inner ear diseases.


Clostridiumnovyi's Alpha-Toxin Changes Proteome and Phosphoproteome of HEp-2 Cells.

  • Theresa Schweitzer‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

C. novyi type A produces the alpha-toxin (TcnA) that belongs to the large clostridial glucosylating toxins (LCGTs) and is able to modify small GTPases by N-acetylglucosamination on conserved threonine residues. In contrast, other LCGTs including Clostridioides difficile toxin A and toxin B (TcdA; TcdB) modify small GTPases by mono-o-glucosylation. Both modifications inactivate the GTPases and cause strong effects on GTPase-dependent signal transduction pathways and the consequent reorganization of the actin cytoskeleton leading to cell rounding and finally cell death. However, the effect of TcnA on target cells is largely unexplored. Therefore, we performed a comprehensive screening approach of TcnA treated HEp-2 cells and analyzed their proteome and their phosphoproteome using LC-MS-based methods. With this data-dependent acquisition (DDA) approach, 5086 proteins and 9427 phosphosites could be identified and quantified. Of these, 35 proteins were found to be significantly altered after toxin treatment, and 1832 phosphosites were responsive to TcnA treatment. By analyzing the TcnA-induced proteomic effects of HEp-2 cells, 23 common signaling pathways were identified to be altered, including Actin Cytoskeleton Signaling, Epithelial Adherens Junction Signaling, and Signaling by Rho Family GTPases. All these pathways are also regulated after application of TcdA or TcdB of C. difficile. After TcnA treatment the regulation on phosphorylation level was much stronger compared to the proteome level, in terms of both strength of regulation and the number of regulated phosphosites. Interestingly, various signaling pathways such as Signaling by Rho Family GTPases or Integrin Signaling were activated on proteome level while being inhibited on phosphorylation level or vice versa as observed for the Role of BRCA1 in DNA Damage Response. ZIP kinase, as well as Calmodulin-dependent protein kinases IV & II, were observed as activated while Aurora-A kinase and CDK kinases tended to be inhibited in cells treated with TcnA based on their substrate regulation pattern.


The Mechanistic Differences in HLA-Associated Carbamazepine Hypersensitivity.

  • Gwendolin S Simper‎ et al.
  • Pharmaceutics‎
  • 2019‎

Drug hypersensitivity reactions that resemble acute immune reactions are linked to certain human leucocyte antigen (HLA) alleles. Severe and life-threatening Stevens Johnson Syndrome and Toxic Epidermal Necrolysis following treatment with the antiepileptic and psychotropic drug Carbamazepine are associated with HLA-B*15:02; whereas carriers of HLA-A*31:01 develop milder symptoms. It is not understood how these immunogenic differences emerge genotype-specific. For HLA-B*15:02 an altered peptide presentation has been described following exposure to the main metabolite of carbamazepine that is binding to certain amino acids in the F pocket of the HLA molecule. The difference in the molecular mechanism of these diseases has not been comprehensively analyzed, yet; and is addressed in this study. Soluble HLA-technology was utilized to examine peptide presentation of HLA-A*31:01 in presence and absence of carbamazepine and its main metabolite and to examine the mode of peptide loading. Proteome analysis of drug-treated and untreated cells was performed. Alterations in sA*31:01-presented peptides after treatment with carbamazepine revealed different half-life times of peptide-HLA- or peptide-drug-HLA complexes. Together with observed changes in the proteome elicited through carbamazepine or its metabolite these results illustrate the mechanistic differences in carbamazepine hypersensitivity for HLA-A*31:01 or B*15:02 patients and constitute the bridge between pharmacology and pharmacogenetics for personalized therapeutics.


Comprehensive Bioinformatics Identifies Key microRNA Players in ATG7-Deficient Lung Fibroblasts.

  • Stevan D Stojanović‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Deficient autophagy has been recently implicated as a driver of pulmonary fibrosis, yet bioinformatics approaches to study this cellular process are lacking. Autophagy-related 5 and 7 (ATG5/ATG7) are critical elements of macro-autophagy. However, an alternative ATG5/ATG7-independent macro-autophagy pathway was recently discovered, its regulation being unknown. Using a bioinformatics proteome profiling analysis of ATG7-deficient human fibroblasts, we aimed to identify key microRNA (miR) regulators in autophagy.


Managing Temporomandibular Joint Osteoarthritis by Dental Stem Cell Secretome.

  • Maria Bousnaki‎ et al.
  • Stem cell reviews and reports‎
  • 2023‎

The potential therapeutic role of the Dental Pulp Stem Cells Secretome (SECR) in a rat model of experimentally induced Temporomandibular Joint (TMJ) Osteoarthritis (OA) was evaluated. Proteomic profiling of the human SECR under specific oxygen tension (5% O2) and stimulation with Tumor Necrosis Factor-alpha (TNF-α) was performed. SECR and respective cell lysates (CL) samples were collected and subjected to SDS-PAGE, followed by LC-MS/MS analysis. The identified proteins were analyzed with Bioinformatic tools. The anti-inflammatory properties of SECR were assessed via an in vitro murine macrophages model, and were further validated in vivo, in a rat model of chemically-induced TMJ-OA by weekly recording of the head withdrawal threshold, the food intake, and the weight change, and radiographically and histologically at 4- and 8-weeks post-treatment. SECR analysis revealed the presence of 50 proteins that were enriched and/or statistically significantly upregulated compared to CL, while many of those proteins were involved in pathways related to "extracellular matrix organization" and "immune system". SECR application in vitro led to a significant downregulation on the expression of pro-inflammatory genes (MMP-13, MMP-9, MMP-3 and MCP-1), while maintaining an increased expression of IL-10 and IL-6. SECR application in vivo had a significant positive effect on all the clinical parameters, resulting in improved food intake, weight, and pain suppression. Radiographically, SECR application had a significant positive effect on trabecular bone thickness and bone density compared to the saline-treated group. Histological analysis indicated that SECR administration reduced inflammation, enhanced ECM and subchondral bone repair and regeneration, thus alleviating TMJ degeneration.


DXD motif-dependent and -independent effects of the chlamydia trachomatis cytotoxin CT166.

  • Miriam Bothe‎ et al.
  • Toxins‎
  • 2015‎

The Gram-negative, intracellular bacterium Chlamydia trachomatis causes acute and chronic urogenital tract infection, potentially leading to infertility and ectopic pregnancy. The only partially characterized cytotoxin CT166 of serovar D exhibits a DXD motif, which is important for the enzymatic activity of many bacterial and mammalian type A glycosyltransferases, leading to the hypothesis that CT166 possess glycosyltransferase activity. CT166-expressing HeLa cells exhibit actin reorganization, including cell rounding, which has been attributed to the inhibition of the Rho-GTPases Rac/Cdc42. Exploiting the glycosylation-sensitive Ras(27H5) antibody, we here show that CT166 induces an epitope change in Ras, resulting in inhibited ERK and PI3K signaling and delayed cell cycle progression. Consistent with the hypothesis that these effects strictly depend on the DXD motif, CT166 with the mutated DXD motif causes neither Ras-ERK inhibition nor delayed cell cycle progression. In contrast, CT166 with the mutated DXD motif is still capable of inhibiting cell migration, suggesting that CT166 with the mutated DXD motif cannot be regarded as inactive in any case. Taken together, CT166 affects various fundamental cellular processes, strongly suggesting its importance for the intracellular survival of chlamydia.


MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart.

  • Virginija Jazbutyte‎ et al.
  • Age (Dordrecht, Netherlands)‎
  • 2013‎

MicroRNAs (miRs) are small non- coding RNA molecules controlling a plethora of biological processes such as development, cellular survival and senescence. We here determined miRs differentially regulated during cardiac postnatal development and aging. Cardiac function, morphology and miR expression profiles were determined in neonatal, 4 weeks, 6 months and 19 months old normotensive male healthy C57/Bl6N mice. MiR-22 was most prominently upregulated during cardiac aging. Cardiac expression of its bioinformatically predicted target mimecan (osteoglycin, OGN) was gradually decreased with advanced age. Luciferase reporter assays validated mimecan as a bona fide miR-22 target. Both, miR-22 and its target mimecan were co- expressed in cardiac fibroblasts and smooth muscle cells. Functionally, miR-22 overexpression induced cellular senescence and promoted migratory activity of cardiac fibroblasts. Small interference RNA-mediated silencing of mimecan in cardiac fibroblasts mimicked the miR-22-mediated effects. Rescue experiments revealed that the effects of miR-22 on cardiac fibroblasts were only partially mediated by mimecan. In conclusion, miR-22 upregulation in the aging heart contributed at least partly to accelerated cardiac fibroblast senescence and increased migratory activity. Our results suggest an involvement of miR-22 in age-associated cardiac changes, such as cardiac fibrosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: