Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

CRTAP is required for prolyl 3- hydroxylation and mutations cause recessive osteogenesis imperfecta.

  • Roy Morello‎ et al.
  • Cell‎
  • 2006‎

Prolyl hydroxylation is a critical posttranslational modification that affects structure, function, and turnover of target proteins. Prolyl 3-hydroxylation occurs at only one position in the triple-helical domain of fibrillar collagen chains, and its biological significance is unknown. CRTAP shares homology with a family of putative prolyl 3-hydroxylases (P3Hs), but it does not contain their common dioxygenase domain. Loss of Crtap in mice causes an osteochondrodysplasia characterized by severe osteoporosis and decreased osteoid production. CRTAP can form a complex with P3H1 and cyclophilin B (CYPB), and Crtap-/- bone and cartilage collagens show decreased prolyl 3-hydroxylation. Moreover, mutant collagen shows evidence of overmodification, and collagen fibrils in mutant skin have increased diameter consistent with altered fibrillogenesis. In humans, CRTAP mutations are associated with the clinical spectrum of recessive osteogenesis imperfecta, including the type II and VII forms. Hence, dysregulation of prolyl 3-hydroxylation is a mechanism for connective tissue disease.


Identification, characterization and expression analysis of a new fibrillar collagen gene, COL27A1.

  • James M Pace‎ et al.
  • Matrix biology : journal of the International Society for Matrix Biology‎
  • 2003‎

The fibrillar collagens provide structural scaffolding and strength to the extracellular matrices of connective tissues. We identified a partial sequence of a new fibrillar collagen gene in the NCBI databases and completed the sequence with bioinformatic approaches and 5' RACE. This gene, designated COL27A1, is approximately 156 kbp long and has 61 exons located on chromosome 9q32-33. The homologous mouse gene is located on chromosome 4. The gene encodes amino- and carboxyl-terminal propeptides similar to those in the 'minor' fibrillar collagens. The triple-helical domain is, however, shorter and contains 994 amino acids with two imperfections of the Gly-Xaa-Yaa repeat pattern. There were three sites of alternative RNA splicing, only one of which led to the intact mRNA that encodes this full-length collagen proalpha chain. Phylogenetic analyses indicated that COL27A1 forms a clade with COL24A1 that is distinct from the two known lineages of fibrillar collagens. Expression analyses of the mouse col27a1 gene demonstrated high expression in cartilage, the eye and ear, but also in lung and colon. It is likely that the major protein product of COL27A1, proalpha1(XXVII), is a component of the extracellular matrices of cartilage and these other tissues. Study of this collagen should yield insights into normal chondrogenesis, and provide clues to the pathogenesis of some chondrodysplasias and disorders of other tissues in which this gene is expressed.


Critical early roles for col27a1a and col27a1b in zebrafish notochord morphogenesis, vertebral mineralization and post-embryonic axial growth.

  • Helena E Christiansen‎ et al.
  • PloS one‎
  • 2009‎

Fibrillar collagens are well known for their links to human diseases, with which all have been associated except for the two most recently identified fibrillar collagens, type XXIV collagen and type XXVII collagen. To assess functions and potential disease phenotypes of type XXVII collagen, we examined its roles in zebrafish embryonic and post-embryonic development.


Identification of reference genes for quantitative PCR during C3H10T1/2 chondrogenic differentiation.

  • Serena Cappato‎ et al.
  • Molecular biology reports‎
  • 2019‎

C3H10T1/2, a mouse mesenchymal stem cell line, is a well-known in vitro model of chondrogenesis that can be easily employed to recapitulate some of the mechanisms intervening in this process. Moreover, these cells can be used to validate the effect of candidate molecules identified by high throughput screening approaches applied to the development of targeted therapy for human disorders in which chondrogenic differentiation may be involved, as in conditions characterized by heterotopic endochondral bone formation. Chondrogenic differentiation of C3H10T1/2 cells can be monitored by applying quantitative polymerase chain reaction (qPCR), one of the most sensitive methods that allows detection of small dynamic changes in gene expression between samples obtained under different experimental conditions. In this work, we have used qPCR to monitor the expression of specific markers during chondrogenic differentiation of C3H10T1/2 cells in micromass cultures. Then we have applied the geNorm approach to identify the most stable reference genes suitable to get a robust normalization of the obtained expression data. Among 12 candidate reference genes (Ap3d1, Csnk2a2, Cdc40, Fbxw2, Fbxo38, Htatsf1, Mon2, Pak1ip1, Zfp91, 18S, ActB, GAPDH) we identified Mon2 and Ap3d1 as the most stable ones during chondrogenesis. ActB, GAPDH and 18S, the most commonly used in the literature, resulted to have an expression level too high compared to the differentiation markers (Sox9, Collagen type 2a1, Collagen type 10a1 and Collagen type 1a1), therefore are actually less recommended for these experimental conditions. In conclusion, we identified nine reference genes that can be equally used to obtain a robust normalization of the gene expression variation during the C3H10T1/2 chondrogenic differentiation.


High-throughput screening for modulators of ACVR1 transcription: discovery of potential therapeutics for fibrodysplasia ossificans progressiva.

  • Serena Cappato‎ et al.
  • Disease models & mechanisms‎
  • 2016‎

The ACVR1 gene encodes a type I receptor of bone morphogenetic proteins (BMPs). Activating mutations in ACVR1 are responsible for fibrodysplasia ossificans progressiva (FOP), a rare disease characterized by congenital toe malformation and progressive heterotopic endochondral ossification leading to severe and cumulative disability. Until now, no therapy has been available to prevent soft-tissue swelling (flare-ups) that trigger the ossification process. With the aim of finding a new therapeutic strategy for FOP, we developed a high-throughput screening (HTS) assay to identify inhibitors of ACVR1 gene expression among drugs already approved for the therapy of other diseases. The screening, based on an ACVR1 promoter assay, was followed by an in vitro and in vivo test to validate and characterize candidate molecules. Among compounds that modulate the ACVR1 promoter activity, we selected the one showing the highest inhibitory effect, dipyridamole, a drug that is currently used as a platelet anti-aggregant. The inhibitory effect was detectable on ACVR1 gene expression, on the whole Smad-dependent BMP signaling pathway, and on chondrogenic and osteogenic differentiation processes by in vitro cellular assays. Moreover, dipyridamole reduced the process of heterotopic bone formation in vivo Our drug repositioning strategy has led to the identification of dipyridamole as a possible therapeutic tool for the treatment of FOP. Furthermore, our study has also defined a pipeline of assays that will be useful for the evaluation of other pharmacological inhibitors of heterotopic ossification.


Identification and characterization of regulatory elements in the promoter of ACVR1, the gene mutated in Fibrodysplasia Ossificans Progressiva.

  • Francesca Giacopelli‎ et al.
  • Orphanet journal of rare diseases‎
  • 2013‎

The ACVR1 gene encodes a type I receptor for bone morphogenetic proteins (BMPs). Mutations in the ACVR1 gene are associated with Fibrodysplasia Ossificans Progressiva (FOP), a rare and extremely disabling disorder characterized by congenital malformation of the great toes and progressive heterotopic endochondral ossification in muscles and other non-skeletal tissues. Several aspects of FOP pathophysiology are still poorly understood, including mechanisms regulating ACVR1 expression. This work aimed to identify regulatory elements that control ACVR1 gene transcription.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: