Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Alveolar epithelial cell therapy with human cord blood-derived hematopoietic progenitor cells.

  • Monique E De Paepe‎ et al.
  • The American journal of pathology‎
  • 2011‎

The role of umbilical cord blood (CB)-derived stem cell therapy in neonatal lung injury remains undetermined. We investigated the capacity of human CB-derived CD34(+) hematopoietic progenitor cells to regenerate injured alveolar epithelium in newborn mice. Double-transgenic mice with doxycycline (Dox)-dependent lung-specific Fas ligand (FasL) overexpression, treated with Dox between embryonal day 15 and postnatal day 3, served as a model of neonatal lung injury. Single-transgenic non-Dox-responsive littermates were controls. CD34(+) cells (1 × 10(5) to 5 × 10(5)) were administered at postnatal day 5 by intranasal inoculation. Engraftment, respiratory epithelial differentiation, proliferation, and cell fusion were studied at 8 weeks after inoculation. Engrafted cells were readily detected in all recipients and showed a higher incidence of surfactant immunoreactivity and proliferative activity in FasL-overexpressing animals compared with non-FasL-injured littermates. Cord blood-derived cells surrounding surfactant-immunoreactive type II-like cells frequently showed a transitional phenotype between type II and type I cells and/or type I cell-specific podoplanin immunoreactivity. Lack of nuclear colocalization of human and murine genomic material suggested the absence of fusion. In conclusion, human CB-derived CD34(+) cells are capable of long-term pulmonary engraftment, replication, clonal expansion, and reconstitution of injured respiratory epithelium by fusion-independent mechanisms. Cord blood-derived surfactant-positive epithelial cells appear to act as progenitors of the distal respiratory unit, analogous to resident type II cells. Graft proliferation and alveolar epithelial differentiation are promoted by lung injury.


HE4 (WFDC2) gene overexpression promotes ovarian tumor growth.

  • Richard G Moore‎ et al.
  • Scientific reports‎
  • 2014‎

Selective overexpression of Human epididymal secretory protein E4 (HE4) points to a role in ovarian cancer tumorigenesis but little is known about the role the HE4 gene or the gene product plays. Here we show that elevated HE4 serum levels correlate with chemoresistance and decreased survival rates in EOC patients. HE4 overexpression promoted xenograft tumor growth and chemoresistance against cisplatin in an animal model resulting in reduced survival rates. HE4 displayed responses to tumor microenvironment constituents and presented increased expression as well as nuclear translocation upon EGF, VEGF and Insulin treatment and nucleolar localization with Insulin treatment. HE4 interacts with EGFR, IGF1R, and transcription factor HIF1α. Constructs of antisense phosphorothio-oligonucleotides targeting HE4 arrested tumor growth in nude mice. Collectively these findings implicate increased HE4 expression as a molecular factor in ovarian cancer tumorigenesis. Selective targeting directed towards the HE4 protein demonstrates therapeutic benefits for the treatment of ovarian cancer.


In utero exposures, infant growth, and DNA methylation of repetitive elements and developmentally related genes in human placenta.

  • Charlotte S Wilhelm-Benartzi‎ et al.
  • Environmental health perspectives‎
  • 2012‎

Fetal programming describes the theory linking environmental conditions during embryonic and fetal development with risk of diseases later in life. Environmental insults in utero may lead to changes in epigenetic mechanisms potentially affecting fetal development.


Effects of Delayed Cord Clamping on 4-Month Ferritin Levels, Brain Myelin Content, and Neurodevelopment: A Randomized Controlled Trial.

  • Judith S Mercer‎ et al.
  • The Journal of pediatrics‎
  • 2018‎

To evaluate whether placental transfusion influences brain myelination at 4 months of age.


Developmental genes targeted for epigenetic variation between twin-twin transfusion syndrome children.

  • Carmen J Marsit‎ et al.
  • Clinical epigenetics‎
  • 2013‎

Epigenetic mechanisms are thought to be critical in mediating the role of the intrauterine environment on lifelong health and disease. Twin-twin transfusion syndrome (TTTS) is a rare condition wherein fetuses share the placenta and develop vascular anastomoses, which allow blood to flow between the fetuses. The unequal flow results in reciprocal hypo- and hypervolemia in the affected twins, striking growth differences and physiologic adaptations in response to this significant stressor. The donor twin in the TTTS syndrome can be profoundly growth restricted and there is likely a nutritional imbalance between the twins. The consequences of TTTS on fetal programming are unknown. This condition can now be effectively treated through the use of fetal laparoscopic procedures, but the potential for lifelong morbidity related to this condition during development is apparent. As this condition and the resulting uteroplacental discordance can play a role in the epigenetic process, we sought to investigate the DNA methylation profiles of childhood survivors of TTTS (n = 14). We focused on differences in both global measures and genome-wide CpG specific DNA methylation between donor and recipient children in this pilot study in order to generate hypotheses for further research.


Ex vivo expanded human cord blood-derived hematopoietic progenitor cells induce lung growth and alveolarization in injured newborn lungs.

  • Quanfu Mao‎ et al.
  • Respiratory research‎
  • 2013‎

We investigated the capacity of expanded cord blood-derived CD34+ hematopoietic progenitor cells to undergo respiratory epithelial differentiation ex vivo, and to engraft and attenuate alveolar disruption in injured newborn murine lungs in vivo.


Effect of prematurity on genome wide methylation in the placenta.

  • Jessica Schuster‎ et al.
  • BMC medical genetics‎
  • 2019‎

Preterm birth is a significant clinical problem and an enormous burden on society, affecting one in eight pregnant women and their newborns. Despite decades of research, the molecular mechanism underlying its pathogenesis remains unclear. Many studies have shown that preterm birth is associated with health risks across the later life course. The "fetal origins" hypothesis postulates that adverse intrauterine exposures are associated with later disease susceptibility. Our recent studies have focused on the placental epigenome at term. We extended these studies to genome-wide placental DNA methylation across a wide range of gestational ages. We applied methylation dependent immunoprecipitation/DNA sequencing (MeDIP-seq) to 9 placentas with gestational age from 25 weeks to term to identify differentially methylated regions (DMRs).


Maternal smoking during pregnancy and infant stress response: test of a prenatal programming hypothesis.

  • Laura R Stroud‎ et al.
  • Psychoneuroendocrinology‎
  • 2014‎

Maternal smoking during pregnancy (MSDP) is associated with early and long-term neurobehavioral deficits; however mechanisms remain unknown. We tested the hypothesis that MSDP programs the hypothalamic pituitary adrenocortical (HPA) axis of the offspring leading to adverse outcomes. In an intensive, prospective study, we investigated associations between MSDP and infant cortisol stress response and explored whether alterations in cortisol response were mediated by epigenetic modulation of the placental glucocorticoid receptor gene (NR3C1).


Efficacy of a non-hypercalcemic vitamin-D2 derived anti-cancer agent (MT19c) and inhibition of fatty acid synthesis in an ovarian cancer xenograft model.

  • Richard G Moore‎ et al.
  • PloS one‎
  • 2012‎

Numerous vitamin-D analogs exhibited poor response rates, high systemic toxicities and hypercalcemia in human trials to treat cancer. We identified the first non-hypercalcemic anti-cancer vitamin D analog MT19c by altering the A-ring of ergocalciferol. This study describes the therapeutic efficacy and mechanism of action of MT19c in both in vitro and in vivo models.


dbPTB: a database for preterm birth.

  • Alper Uzun‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2012‎

Genome-wide association studies (GWAS) query the entire genome in a hypothesis-free, unbiased manner. Since they have the potential for identifying novel genetic variants, they have become a very popular approach to the investigation of complex diseases. Nonetheless, since the success of the GWAS approach varies widely, the identification of genetic variants for complex diseases remains a difficult problem. We developed a novel bioinformatics approach to identify the nominal genetic variants associated with complex diseases. To test the feasibility of our approach, we developed a web-based aggregation tool to organize the genes, genetic variations and pathways involved in preterm birth. We used semantic data mining to extract all published articles related to preterm birth. All articles were reviewed by a team of curators. Genes identified from public databases and archives of expression arrays were aggregated with genes curated from the literature. Pathway analysis was used to impute genes from pathways identified in the curations. The curated articles and collected genetic information form a unique resource for investigators interested in preterm birth. The Database for Preterm Birth exemplifies an approach that is generalizable to other disorders for which there is evidence of significant genetic contributions.


Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context.

  • Brock C Christensen‎ et al.
  • PLoS genetics‎
  • 2009‎

Epigenetic control of gene transcription is critical for normal human development and cellular differentiation. While alterations of epigenetic marks such as DNA methylation have been linked to cancers and many other human diseases, interindividual epigenetic variations in normal tissues due to aging, environmental factors, or innate susceptibility are poorly characterized. The plasticity, tissue-specific nature, and variability of gene expression are related to epigenomic states that vary across individuals. Thus, population-based investigations are needed to further our understanding of the fundamental dynamics of normal individual epigenomes. We analyzed 217 non-pathologic human tissues from 10 anatomic sites at 1,413 autosomal CpG loci associated with 773 genes to investigate tissue-specific differences in DNA methylation and to discern how aging and exposures contribute to normal variation in methylation. Methylation profile classes derived from unsupervised modeling were significantly associated with age (P<0.0001) and were significant predictors of tissue origin (P<0.0001). In solid tissues (n = 119) we found striking, highly significant CpG island-dependent correlations between age and methylation; loci in CpG islands gained methylation with age, loci not in CpG islands lost methylation with age (P<0.001), and this pattern was consistent across tissues and in an analysis of blood-derived DNA. Our data clearly demonstrate age- and exposure-related differences in tissue-specific methylation and significant age-associated methylation patterns which are CpG island context-dependent. This work provides novel insight into the role of aging and the environment in susceptibility to diseases such as cancer and critically informs the field of epigenomics by providing evidence of epigenetic dysregulation by age-related methylation alterations. Collectively we reveal key issues to consider both in the construction of reference and disease-related epigenomes and in the interpretation of potentially pathologically important alterations.


Delayed Cord Clamping in Infants with Suspected Intrauterine Growth Restriction.

  • Meijia Wang‎ et al.
  • The Journal of pediatrics‎
  • 2018‎

We evaluated a subset of infants with suspected intrauterine growth restriction or birth weights small for gestational age enrolled in a study of delayed cord clamping for preterm infants. Compared with immediate clamping, delayed cord clamping was associated with no apparent harm and less suspected necrotizing enterocolitis.


Epigenome-wide Analysis Identifies Genes and Pathways Linked to Neurobehavioral Variation in Preterm Infants.

  • Todd M Everson‎ et al.
  • Scientific reports‎
  • 2019‎

Neonatal molecular biomarkers of neurobehavioral responses (measures of brain-behavior relationships), when combined with neurobehavioral performance measures, could lead to better predictions of long-term developmental outcomes. To this end, we examined whether variability in buccal cell DNA methylation (DNAm) associated with neurobehavioral profiles in a cohort of infants born less than 30 weeks postmenstrual age (PMA) and participating in the Neonatal Neurobehavior and Outcomes in Very Preterm Infants (NOVI) Study (N = 536). We tested whether epigenetic age, age acceleration, or DNAm levels at individual loci differed between infants based on their NICU Network Neurobehavioral Scale (NNNS) profile classifications. We adjusted for recruitment site, infant sex, PMA, and tissue heterogeneity. Infants with an optimally well-regulated NNNS profile had older epigenetic age compared to other NOVI infants (β1 = 0.201, p-value = 0.026), but no significant difference in age acceleration. In contrast, infants with an atypical NNNS profile had differential methylation at 29 CpG sites (FDR < 10%). Some of the genes annotated to these CpGs included PLA2G4E, TRIM9, GRIK3, and MACROD2, which have previously been associated with neurological structure and function, or with neurobehavioral disorders. These findings contribute to the existing evidence that neonatal epigenetic variations may be informative for infant neurobehavior.


NEOage clocks - epigenetic clocks to estimate post-menstrual and postnatal age in preterm infants.

  • Stefan Graw‎ et al.
  • Aging‎
  • 2021‎

Epigenetic clocks based on DNA methylation (DNAm) can accurately predict chronological age and are thought to capture biological aging. A variety of epigenetic clocks have been developed for different tissue types and age ranges, but none have focused on postnatal age prediction for preterm infants. Epigenetic estimators of biological age might be especially informative in epidemiologic studies of neonates since DNAm is highly dynamic during the neonatal period and this is a key developmental window. Additionally, markers of biological aging could be particularly important for those born preterm since they are at heightened risk of developmental impairments. We aimed to fill this gap by developing epigenetic clocks for neonatal aging in preterm infants. As part of the Neonatal Neurobehavior and Outcomes in Very Preterm Infants (NOVI) study, buccal cells were collected at NICU discharge to profile DNAm levels in 542 very preterm infants. We applied elastic net regression to identify four epigenetic clocks (NEOage Clocks) predictive of post-menstrual and postnatal age, compatible with the Illumina EPIC and 450K arrays. We observed high correlations between predicted and reported ages (0.93 - 0.94) with root mean squared errors (1.28 - 1.63 weeks). Epigenetic estimators of neonatal aging in preterm infants can be useful tools to evaluate biological maturity and associations with neonatal and long-term morbidities.


Pathway-based genetic analysis of preterm birth.

  • Alper Uzun‎ et al.
  • Genomics‎
  • 2013‎

Preterm birth in the United States is now 12%. Multiple genes, gene networks, and variants have been associated with this disease. Using a custom database for preterm birth (dbPTB) with a refined set of genes extensively curated from literature and biological databases, we analyzed GWAS of preterm birth for complete genotype data on nearly 2000 preterm and term mothers. We used both the curated genes and a genome-wide approach to carry out a pathway-based analysis. There were 19 significant pathways, which withstood FDR correction for multiple testing that were identified using both the curated genes and the genome-wide approach. The analysis based on the curated genes was more significant than genome-wide in 15 out of 19 pathways. This approach demonstrates the use of a validated set of genes, in the analysis of otherwise unsuccessful GWAS data, to identify gene-gene interactions in a way that enhances statistical power and discovery.


A core of differentially methylated CpG loci in gMDSCs isolated from neonatal and adult sources.

  • Isabella Berglund-Brown‎ et al.
  • Clinical epigenetics‎
  • 2022‎

Myeloid-derived suppressor cells (MDSCs), which include monocytic (mMDSCs) and granulocytic (gMDSCs) cells, are an immunosuppressive, heterogeneous population of cells upregulated in cancer and other pathologic conditions, in addition to normal conditions of stress. The origin of MDSCs is debated, and the regulatory pattern responsible for gMDSC differentiation remains unknown. Since DNA methylation (DNAm) contributes to lineage differentiation, we have investigated whether it contributes to the acquisition of the gMDSC phenotype.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: