Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Excitatory neuronal CHD8 in the regulation of neocortical development and sensory-motor behaviors.

  • Hanseul Kweon‎ et al.
  • Cell reports‎
  • 2021‎

CHD8 (chromodomain helicase DNA-binding protein 8) is a chromatin remodeler associated with autism spectrum disorders. Homozygous Chd8 deletion in mice leads to embryonic lethality, making it difficult to assess whether CHD8 regulates brain development and whether CHD8 haploinsufficiency-related macrocephaly reflects normal CHD8 functions. Here, we report that homozygous conditional knockout of Chd8 restricted to neocortical glutamatergic neurons causes apoptosis-dependent near-complete elimination of neocortical structures. These mice, however, display normal survival and hyperactivity, anxiolytic-like behavior, and increased social interaction. They also show largely normal auditory function and moderately impaired visual and motor functions but enhanced whisker-related somatosensory function. These changes accompany thalamic hyperactivity, revealed by 15.2-Tesla fMRI, and increased intrinsic excitability and decreased inhibitory synaptic transmission in thalamic ventral posterior medial (VPM) neurons involved in somatosensation. These results suggest that excitatory neuronal CHD8 critically regulates neocortical development through anti-apoptotic mechanisms, neocortical elimination distinctly affects cognitive behaviors and sensory-motor functions in mice, and Chd8 haploinsufficiency-related macrocephaly might represent compensatory responses.


Postnatal age-differential ASD-like transcriptomic, synaptic, and behavioral deficits in Myt1l-mutant mice.

  • Seongbin Kim‎ et al.
  • Cell reports‎
  • 2022‎

Myelin transcription factor 1 like (Myt1l), a zinc-finger transcription factor, promotes neuronal differentiation and is implicated in autism spectrum disorder (ASD) and intellectual disability. However, it remains unclear whether Myt1l promotes neuronal differentiation in vivo and its deficiency in mice leads to disease-related phenotypes. Here, we report that Myt1l-heterozygous mutant (Myt1l-HT) mice display postnatal age-differential ASD-related phenotypes: newborn Myt1l-HT mice, with strong Myt1l expression, show ASD-like transcriptomic changes involving decreased synaptic gene expression and prefrontal excitatory synaptic transmission and altered righting reflex. Juvenile Myt1l-HT mice, with markedly decreased Myt1l expression, display reverse ASD-like transcriptomes, increased prefrontal excitatory transmission, and largely normal behaviors. Adult Myt1l-HT mice show ASD-like transcriptomes involving astrocytic and microglial gene upregulation, increased prefrontal inhibitory transmission, and behavioral deficits. Therefore, Myt1l haploinsufficiency leads to ASD-related phenotypes in newborn mice, which are temporarily normalized in juveniles but re-appear in adults, pointing to continuing phenotypic changes long after a marked decrease of Myt1l expression in juveniles.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: