Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

Commensal Fungi Recapitulate the Protective Benefits of Intestinal Bacteria.

  • Tony T Jiang‎ et al.
  • Cell host & microbe‎
  • 2017‎

Commensal intestinal microbes are collectively beneficial in preventing local tissue injury and augmenting systemic antimicrobial immunity. However, given the near-exclusive focus on bacterial species in establishing these protective benefits, the contributions of other types of commensal microbes remain poorly defined. Here, we show that commensal fungi can functionally replace intestinal bacteria by conferring protection against injury to mucosal tissues and positively calibrating the responsiveness of circulating immune cells. Susceptibility to colitis and influenza A virus infection occurring upon commensal bacteria eradication is efficiently overturned by mono-colonization with either Candida albicans or Saccharomyces cerevisiae. The protective benefits of commensal fungi are mediated by mannans, a highly conserved component of fungal cell walls, since intestinal stimulation with this moiety alone overrides disease susceptibility in mice depleted of commensal bacteria. Thus, commensal enteric fungi safeguard local and systemic immunity by providing tonic microbial stimulation that can functionally replace intestinal bacteria.


IL-10-producing Tfh cells accumulate with age and link inflammation with age-related immune suppression.

  • Maha Almanan‎ et al.
  • Science advances‎
  • 2020‎

Aging results in profound immune dysfunction, resulting in the decline of vaccine responsiveness previously attributed to irreversible defects in the immune system. In addition to increased interleukin-6 (IL-6), we found aged mice exhibit increased systemic IL-10 that requires forkhead box P3-negative (FoxP3-), but not FoxP3+, CD4+T cells. Most IL-10-producing cells manifested a T follicular helper (Tfh) phenotype and required the Tfh cytokines IL-6 and IL-21 for their accrual, so we refer to them as Tfh10 cells. IL-21 was also required to maintain normal serum levels of IL-6 and IL-10. Notably, antigen-specific Tfh10 cells arose after immunization of aged mice, and neutralization of IL-10 receptor signaling significantly restored Tfh-dependent antibody responses, whereas depletion of FoxP3+ regulatory and follicular regulatory cells did not. Thus, these data demonstrate that immune suppression with age is reversible and implicate Tfh10 cells as an intriguing link between "inflammaging" and impaired immune responses with age.


The histone-binding code of nuclear receptor co-repressors matches the substrate specificity of histone deacetylase 3.

  • Helen B Hartman‎ et al.
  • EMBO reports‎
  • 2005‎

Ligands for nuclear receptors facilitate the exchange of co-repressors for coactivators, leading to chromatin modifications that favour the activation of gene transcription. Here, we show that the repressed state of an endogenous retinoic acid-regulated gene is quickly re-established after ligand removal. As expected, repression is characterized by recruitment of N-CoR/SMRT-HDAC3 (histone deacetylase 3) co-repressor complexes, leading to local histone hypoacetylation. The achievement of the repressed state involves the ordered deacetylation of lysines in H4 tails. This order is determined by the inherent substrate specificity of HDAC3, and unexpectedly predicts the binding preference of N-CoR/SMRT for submaximally acetylated H4 tails. The match between the specificity of acetyl-histone deacetylation by HDAC3 and the histone-binding preference of N-CoR/SMRT allows the co-repressor complex to stabilize and propagate repression of nuclear hormone receptor gene targets.


Insulin-like Growth Factor 1 Supports a Pulmonary Niche that Promotes Type 3 Innate Lymphoid Cell Development in Newborn Lungs.

  • Katherine Oherle‎ et al.
  • Immunity‎
  • 2020‎

Type 3 innate lymphoid cells (ILC3s) are critical for lung defense against bacterial pneumonia in the neonatal period, but the signals that guide pulmonary ILC3 development remain unclear. Here, we demonstrated that pulmonary ILC3s descended from ILC precursors that populated a niche defined by fibroblasts in the developing lung. Alveolar fibroblasts produced insulin-like growth factor 1 (IGF1), which instructed expansion and maturation of pulmonary ILC precursors. Conditional ablation of IGF1 in alveolar fibroblasts or deletion of the IGF-1 receptor from ILC precursors interrupted ILC3 biogenesis and rendered newborn mice susceptible to pneumonia. Premature infants with bronchopulmonary dysplasia, characterized by interrupted postnatal alveolar development and increased morbidity to respiratory infections, had reduced IGF1 concentrations and pulmonary ILC3 numbers. These findings indicate that the newborn period is a critical window in pulmonary immunity development, and disrupted lung development in prematurely born infants may have enduring effects on host resistance to respiratory infections.


Metagenomic analysis of the fecal microbiome in colorectal cancer patients compared to healthy controls as a function of age.

  • Jordan Kharofa‎ et al.
  • Cancer medicine‎
  • 2023‎

Colorectal cancer (CRC) incidence is increasing in young patients without a clear etiology. Emerging data have implicated the fecal microbiome in CRC carcinogenesis. However, its impact on young onset CRC is poorly defined.


Epithelial-intrinsic IKKα expression regulates group 3 innate lymphoid cell responses and antibacterial immunity.

  • Paul R Giacomin‎ et al.
  • The Journal of experimental medicine‎
  • 2015‎

Innate lymphoid cells (ILCs) are critical for maintaining epithelial barrier integrity at mucosal surfaces; however, the tissue-specific factors that regulate ILC responses remain poorly characterized. Using mice with intestinal epithelial cell (IEC)-specific deletions in either inhibitor of κB kinase (IKK)α or IKKβ, two critical regulators of NFκB activation, we demonstrate that IEC-intrinsic IKKα expression selectively regulates group 3 ILC (ILC3)-dependent antibacterial immunity in the intestine. Although IKKβ(ΔIEC) mice efficiently controlled Citrobacter rodentium infection, IKKα(ΔIEC) mice exhibited severe intestinal inflammation, increased bacterial dissemination to peripheral organs, and increased host mortality. Consistent with weakened innate immunity to C. rodentium, IKKα(ΔIEC) mice displayed impaired IL-22 production by RORγt(+) ILC3s, and therapeutic delivery of rIL-22 or transfer of sort-purified IL-22-competent ILCs from control mice could protect IKKα(ΔIEC) mice from C. rodentium-induced morbidity. Defective ILC3 responses in IKKα(ΔIEC) mice were associated with overproduction of thymic stromal lymphopoietin (TSLP) by IECs, which negatively regulated IL-22 production by ILC3s and impaired innate immunity to C. rodentium. IEC-intrinsic IKKα expression was similarly critical for regulation of intestinal inflammation after chemically induced intestinal damage and colitis. Collectively, these data identify a previously unrecognized role for epithelial cell-intrinsic IKKα expression and TSLP in regulating ILC3 responses required to maintain intestinal barrier immunity.


Commensal bacteria calibrate the activation threshold of innate antiviral immunity.

  • Michael C Abt‎ et al.
  • Immunity‎
  • 2012‎

Signals from commensal bacteria can influence immune cell development and susceptibility to infectious or inflammatory diseases. However, the mechanisms by which commensal bacteria regulate protective immunity after exposure to systemic pathogens remain poorly understood. Here, we demonstrate that antibiotic-treated (ABX) mice exhibit impaired innate and adaptive antiviral immune responses and substantially delayed viral clearance after exposure to systemic LCMV or mucosal influenza virus. Furthermore, ABX mice exhibited severe bronchiole epithelial degeneration and increased host mortality after influenza virus infection. Genome-wide transcriptional profiling of macrophages isolated from ABX mice revealed decreased expression of genes associated with antiviral immunity. Moreover, macrophages from ABX mice exhibited defective responses to type I and type II IFNs and impaired capacity to limit viral replication. Collectively, these data indicate that commensal-derived signals provide tonic immune stimulation that establishes the activation threshold of the innate immune system required for optimal antiviral immunity.


Epithelial Histone Deacetylase 3 Instructs Intestinal Immunity by Coordinating Local Lymphocyte Activation.

  • Nazanin Navabi‎ et al.
  • Cell reports‎
  • 2017‎

Mucosal tissues are constantly in direct contact with diverse beneficial and pathogenic microbes, highlighting the need for orchestrating complex microbial signals to sustain effective host defense. Here, we show an essential role for intestinal epithelial cell expression of histone deacetylase 3 (HDAC3) in responding to pathogenic microbes and activating protective innate immunity. Mice lacking HDAC3 in intestinal epithelial cells were more susceptible to Citrobacter rodentium when under tonic stimulation by the commensal microbiota. This impaired host defense reflected significantly decreased IFNγ production by intraepithelial CD8+ T cells early during infection. Further, HDAC3 was necessary for infection-induced epithelial expression of the IFNγ-inducing factor IL-18, and administration of IL-18 restored IFNγ activity to resident CD8+ T cells and reduced infection. Thus, HDAC3 mediates communication between intestinal epithelial cells and resident lymphocytes, revealing that epithelial priming by an epigenetic modifier may direct mucosal regulation of host defense against pathogenic microbes.


Microbiota-derived metabolite promotes HDAC3 activity in the gut.

  • Shu-En Wu‎ et al.
  • Nature‎
  • 2020‎

The coevolution of mammalian hosts and their beneficial commensal microbes has led to development of symbiotic host-microbiota relationships1. Epigenetic machinery permits mammalian cells to integrate environmental signals2; however, how these pathways are fine-tuned by diverse cues from commensal bacteria is not well understood. Here we reveal a highly selective pathway through which microbiota-derived inositol phosphate regulates histone deacetylase 3 (HDAC3) activity in the intestine. Despite the abundant presence of HDAC inhibitors such as butyrate in the intestine, we found that HDAC3 activity was sharply increased in intestinal epithelial cells of microbiota-replete mice compared with germ-free mice. This divergence was reconciled by the finding that commensal bacteria, including Escherichia coli, stimulated HDAC activity through metabolism of phytate and production of inositol-1,4,5-trisphosphate (InsP3). Both intestinal exposure to InsP3 and phytate ingestion promoted recovery following intestinal damage. Of note, InsP3 also induced growth of intestinal organoids derived from human tissue, stimulated HDAC3-dependent proliferation and countered butyrate inhibition of colonic growth. Collectively, these results show that InsP3 is a microbiota-derived metabolite that activates a mammalian histone deacetylase to promote epithelial repair. Thus, HDAC3 represents a convergent epigenetic sensor of distinct metabolites that calibrates host responses to diverse microbial signals.


Commensal segmented filamentous bacteria-derived retinoic acid primes host defense to intestinal infection.

  • Vivienne Woo‎ et al.
  • Cell host & microbe‎
  • 2021‎

Interactions between the microbiota and mammalian host are essential for defense against infection, but the microbial-derived cues that mediate this relationship remain unclear. Here, we find that intestinal epithelial cell (IEC)-associated commensal bacteria, segmented filamentous bacteria (SFB), promote early protection against the pathogen Citrobacter rodentium, independent of CD4+ T cells. SFB induced histone modifications in IECs at sites enriched for retinoic acid receptor motifs, suggesting that SFB may enhance defense through retinoic acid (RA). Consistent with this, inhibiting RA signaling suppressed SFB-induced protection. Intestinal RA levels were elevated in SFB mice, despite the inhibition of mammalian RA production, indicating that SFB directly modulate RA. Interestingly, RA was produced by intestinal bacteria, and the loss of bacterial-intrinsic aldehyde dehydrogenase activity decreased the RA levels and increased infection. These data reveal RA as an unexpected microbiota-derived metabolite that primes innate defense and suggests that pre- and probiotic approaches to elevate RA could prevent or combat infections.


Epithelial sensing of microbiota-derived signals.

  • Emily M Eshleman‎ et al.
  • Genes and immunity‎
  • 2021‎

The gastrointestinal tract harbors trillions of microbial species, collectively termed the microbiota, which establish a symbiotic relationship with the host. Decades of research have emphasized the necessity of microbial signals in the development, maturation, and function of host physiology. However, changes in the composition or containment of the microbiota have been linked to the development of several chronic inflammatory diseases, including inflammatory bowel diseases. Intestinal epithelial cells (IECs) are in constant contact with the microbiota and are critical for maintaining intestinal homeostasis. Signals from the microbiota are directly sensed by IECs and influence intestinal health by calibrating immune cell responses and fortifying intestinal barrier function. IECs detect commensal microbes through engagement of common pattern recognition receptors or by sensing the production of microbial-derived metabolites. Deficiencies in these microbial-detecting pathways in IECs leads to impaired epithelial barrier function and altered intestinal homeostasis. This Review aims to highlight the pathways by which IECs sense microbiota-derived signals and the necessity of these detection pathways in maintaining epithelial barrier integrity.


Kruppel-like factor 2+ CD4 T cells avert microbiota-induced intestinal inflammation.

  • Tzu-Yu Shao‎ et al.
  • Cell reports‎
  • 2023‎

Intestinal colonization by antigenically foreign microbes necessitates expanded peripheral immune tolerance. Here we show commensal microbiota prime expansion of CD4 T cells unified by the Kruppel-like factor 2 (KLF2) transcriptional regulator and an essential role for KLF2+ CD4 cells in averting microbiota-driven intestinal inflammation. CD4 cells with commensal specificity in secondary lymphoid organs and intestinal tissues are enriched for KLF2 expression, and distinct from FOXP3+ regulatory T cells or other differentiation lineages. Mice with conditional KLF2 deficiency in T cells develop spontaneous rectal prolapse and intestinal inflammation, phenotypes overturned by eliminating microbiota or reconstituting with donor KLF2+ cells. Activated KLF2+ cells selectively produce IL-10, and eliminating IL-10 overrides their suppressive function in vitro and protection against intestinal inflammation in vivo. Together with reduced KLF2+ CD4 cell accumulation in Crohn's disease, a necessity for the KLF2+ subpopulation of T regulatory type 1 (Tr1) cells in sustaining commensal tolerance is demonstrated.


Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology.

  • Theresa Alenghat‎ et al.
  • Nature‎
  • 2008‎

Rhythmic changes in histone acetylation at circadian clock genes suggest that temporal modulation of gene expression is regulated by chromatin modifications. Furthermore, recent studies demonstrate a critical relationship between circadian and metabolic physiology. The nuclear receptor corepressor 1 (Ncor1) functions as an activating subunit for the chromatin modifying enzyme histone deacetylase 3 (Hdac3). Lack of Ncor1 is incompatible with life, and hence it is unknown whether Ncor1, and particularly its regulation of Hdac3, is critical for adult mammalian physiology. Here we show that specific, genetic disruption of the Ncor1-Hdac3 interaction in mice causes aberrant regulation of clock genes and results in abnormal circadian behaviour. These mice are also leaner and more insulin-sensitive owing to increased energy expenditure. Unexpectedly, loss of a functional Ncor1-Hdac3 complex in vivo does not lead to sustained increases in known catabolic genes, but instead significantly alters the oscillatory patterns of several metabolic genes, demonstrating that circadian regulation of metabolism is critical for normal energy balance. These findings indicate that activation of Hdac3 by Ncor1 is a nodal point in the epigenetic regulation of circadian and metabolic physiology.


Intestinal epithelial HDAC3 and MHC class II coordinate microbiota-specific immunity.

  • Emily M Eshleman‎ et al.
  • The Journal of clinical investigation‎
  • 2023‎

Aberrant immune responses to resident microbes promote inflammatory bowel disease and other chronic inflammatory conditions. However, how microbiota-specific immunity is controlled in mucosal tissues remains poorly understood. Here, we found that mice lacking epithelial expression of microbiota-sensitive histone deacetylase 3 (HDAC3) exhibited increased accumulation of commensal-specific CD4+ T cells in the intestine, provoking the hypothesis that epithelial HDAC3 may instruct local microbiota-specific immunity. Consistent with this, microbiota-specific CD4+ T cells and epithelial HDAC3 expression were concurrently induced following early-life microbiota colonization. Further, epithelium-intrinsic ablation of HDAC3 decreased commensal-specific Tregs, increased commensal-specific Th17 cells, and promoted T cell-driven colitis. Mechanistically, HDAC3 was essential for NF-κB-dependent regulation of epithelial MHC class II (MHCII). Epithelium-intrinsic MHCII dampened local accumulation of commensal-specific Th17 cells in adult mice and protected against microbiota-triggered inflammation. Remarkably, HDAC3 enabled the microbiota to induce MHCII expression on epithelial cells and limit the number of commensal-specific T cells in the intestine. Collectively, these data reveal a central role for an epithelial histone deacetylase in directing the dynamic balance of tissue-intrinsic CD4+ T cell subsets that recognize commensal microbes and control inflammation.


Dietary phytate primes epithelial antibacterial immunity in the intestine.

  • Seika Hashimoto-Hill‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Although diet has long been associated with susceptibility to infection, the dietary components that regulate host defense remain poorly understood. Here, we demonstrate that consuming rice bran decreases susceptibility to intestinal infection with Citrobacter rodentium, a murine pathogen that is similar to enteropathogenic E. coli infection in humans. Rice bran naturally contains high levels of the substance phytate. Interestingly, phytate supplementation also protected against intestinal infection, and enzymatic metabolism of phytate by commensal bacteria was necessary for phytate-induced host defense. Mechanistically, phytate consumption induced mammalian intestinal epithelial expression of STAT3-regulated antimicrobial pathways and increased phosphorylated STAT3, suggesting that dietary phytate promotes innate defense through epithelial STAT3 activation. Further, phytate regulation of epithelial STAT3 was mediated by the microbiota-sensitive enzyme histone deacetylase 3 (HDAC3). Collectively, these data demonstrate that metabolism of dietary phytate by microbiota decreases intestinal infection and suggests that consuming bran and other phytate-enriched foods may represent an effective dietary strategy for priming host immunity.


Microbiota-derived butyrate restricts tuft cell differentiation via histone deacetylase 3 to modulate intestinal type 2 immunity.

  • Emily M Eshleman‎ et al.
  • Immunity‎
  • 2024‎

Tuft cells in mucosal tissues are key regulators of type 2 immunity. Here, we examined the impact of the microbiota on tuft cell biology in the intestine. Succinate induction of tuft cells and type 2 innate lymphoid cells was elevated with loss of gut microbiota. Colonization with butyrate-producing bacteria or treatment with butyrate suppressed this effect and reduced intestinal histone deacetylase activity. Epithelial-intrinsic deletion of the epigenetic-modifying enzyme histone deacetylase 3 (HDAC3) inhibited tuft cell expansion in vivo and impaired type 2 immune responses during helminth infection. Butyrate restricted stem cell differentiation into tuft cells, and inhibition of HDAC3 in adult mice and human intestinal organoids blocked tuft cell expansion. Collectively, these data define a HDAC3 mechanism in stem cells for tuft cell differentiation that is dampened by a commensal metabolite, revealing a pathway whereby the microbiota calibrate intestinal type 2 immunity.


Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus.

  • Laurel A Monticelli‎ et al.
  • Nature immunology‎
  • 2011‎

Innate lymphoid cells (ILCs), a heterogeneous cell population, are critical in orchestrating immunity and inflammation in the intestine, but whether ILCs influence immune responses or tissue homeostasis at other mucosal sites remains poorly characterized. Here we identify a population of lung-resident ILCs in mice and humans that expressed the alloantigen Thy-1 (CD90), interleukin 2 (IL-2) receptor a-chain (CD25), IL-7 receptor a-chain (CD127) and the IL-33 receptor subunit T1-ST2. Notably, mouse ILCs accumulated in the lung after infection with influenza virus, and depletion of ILCs resulted in loss of airway epithelial integrity, diminished lung function and impaired airway remodeling. These defects were restored by administration of the lung ILC product amphiregulin. Collectively, our results demonstrate a critical role for lung ILCs in restoring airway epithelial integrity and tissue homeostasis after infection with influenza virus.


Disruption of Epithelial HDAC3 in Intestine Prevents Diet-Induced Obesity in Mice.

  • Jordan Whitt‎ et al.
  • Gastroenterology‎
  • 2018‎

Intestinal microbiota modulate metabolism and associate closely with epithelial cells in the intestine. In intestinal epithelial cells (IECs), histone deacetylase 3 (HDAC3) integrates microbiota-derived signals to control intestinal homeostasis. We investigated whether HDAC3 in IECs regulates metabolism and the development of obesity in mice.


Microbiota Inhibit Epithelial Pathogen Adherence by Epigenetically Regulating C-Type Lectin Expression.

  • Vivienne Woo‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Numerous bacterial pathogens infect the mammalian host by initially associating with epithelial cells that line the intestinal lumen. Recent work has revealed that commensal bacteria that reside in the intestine promote defense against pathogenic infection, however whether the microbiota direct host pathways that alter pathogen adherence is not well-understood. Here, by comparing germ-free mice, we identify that the microbiota decrease bacterial pathogen adherence and dampen epithelial expression of the cell surface glycoprotein C-type lectin 2e (Clec2e). Functional studies revealed that overexpression of this lectin promotes adherence of intestinal bacterial pathogens to mammalian cells. Interestingly, microbiota-sensitive downregulation of Clec2e corresponds with decreased histone acetylation of the Clec2e gene in intestinal epithelial cells. Histone deacetylation and transcriptional regulation of Clec2e depends on expression and recruitment of the histone deacetylase HDAC3. Thus, commensal bacteria epigenetically instruct epithelial cells to decrease expression of a C-type lectin that promotes pathogen adherence, revealing a novel mechanism for how the microbiota promote innate defense against infection.


Inflammation-Associated Microbiota Composition Across Domestic Animals.

  • Seika Hashimoto-Hill‎ et al.
  • Frontiers in genetics‎
  • 2021‎

Domestic animals represent important resources for understanding shared mechanisms underlying complex natural diseases that arise due to both genetic and environmental factors. Intestinal inflammation, particularly inflammatory bowel disease (IBD), is a significant health challenge in humans and domestic animals. While the etiology of IBD is multifactorial, imbalance of symbiotic gut microbiota has been hypothesized to play a central role in disease pathophysiology. Advances in genomic sequencing and analytical pipelines have enabled researchers to decipher the composition of the intestinal microbiota during health and in the context of naturally occurring diseases. This review compiles microbiome genomic data across domestic species and highlights a common occurrence of gut microbiome dysbiosis during idiopathic intestinal inflammation in multiple species, including dogs, cats, horses, cows, and pigs. Current microbiome data obtained from animals with intestinal inflammation are mostly limited to taxonomical analyses in association with broad clinical phenotype. In general, a pathogen or pathosymbiont were not detected. Rather, functional potential of the altered microbiota has been suggested to be one of the key etiologic factors. Among the domestic species studied, canine analyses are currently the most advanced with incorporation of functional profiling of microbiota. Canine IBD parallels features of the disease in humans, thus canines represent a strong natural model for human IBD. While deeper analyses of metagenomic data, coupled with host molecular analyses are needed, comparative studies across domestic species can reveal shared microbial alterations and regulatory mechanisms that will improve our understanding of intestinal inflammation in both animals and humans.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: