Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 49 papers

The GLP-1 Receptor Agonist Liraglutide Improves Memory Function and Increases Hippocampal CA1 Neuronal Numbers in a Senescence-Accelerated Mouse Model of Alzheimer's Disease.

  • Henrik H Hansen‎ et al.
  • Journal of Alzheimer's disease : JAD‎
  • 2015‎

Recent studies indicate that glucagon-like peptide 1 (GLP-1) receptor agonists, currently used in the management of type 2 diabetes, exhibit neurotrophic and neuroprotective effects in amyloid-β (Aβ) toxicity models of Alzheimer's disease (AD). We investigated the potential pro-cognitive and neuroprotective effects of the once-daily GLP-1 receptor agonist liraglutide in senescence-accelerated mouse prone 8 (SAMP8) mice, a model of age-related sporadic AD not dominated by amyloid plaques. Six-month-old SAMP8 mice received liraglutide (100 or 500 μg/kg/day, s.c.) or vehicle once daily for 4 months. Vehicle-dosed age-matched 50% back-crossed as well as untreated young (4-month-old) SAMP8 mice were used as control groups for normal memory function. Vehicle-dosed 10-month-old SAMP8 mice showed significant learning and memory retention deficits in an active-avoidance T-maze, as compared to both control groups. Also, 10-month-old SAMP8 mice displayed no immunohistological signatures of amyloid-β plaques or hyperphosphorylated tau, indicating the onset of cognitive deficits prior to deposition of amyloid plaques and neurofibrillary tangles in this AD model. Liraglutide significantly increased memory retention and total hippocampal CA1 pyramidal neuron numbers in SAMP8 mice, as compared to age-matched vehicle-dosed SAMP8 mice. In conclusion, liraglutide delayed or partially halted the progressive decline in memory function associated with hippocampal neuronal loss in a mouse model of pathological aging with characteristics of neurobehavioral and neuropathological impairments observed in early-stage sporadic AD.


Integrated Brain Atlas for Unbiased Mapping of Nervous System Effects Following Liraglutide Treatment.

  • Casper Bo Gravesen Salinas‎ et al.
  • Scientific reports‎
  • 2018‎

Light Sheet Fluorescence Microscopy (LSFM) of whole organs, in particular the brain, offers a plethora of biological data imaged in 3D. This technique is however often hindered by cumbersome non-automated analysis methods. Here we describe an approach to fully automate the analysis by integrating with data from the Allen Institute of Brain Science (AIBS), to provide precise assessment of the distribution and action of peptide-based pharmaceuticals in the brain. To illustrate this approach, we examined the acute central nervous system effects of the glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide. Peripherally administered liraglutide accessed the hypothalamus and brainstem, and led to activation in several brain regions of which most were intersected by projections from neurons in the lateral parabrachial nucleus. Collectively, we provide a rapid and unbiased analytical framework for LSFM data which enables quantification and exploration based on data from AIBS to support basic and translational discovery.


Bile-acid-mediated decrease in endoplasmic reticulum stress: a potential contributor to the metabolic benefits of ileal interposition surgery in UCD-T2DM rats.

  • Bethany P Cummings‎ et al.
  • Disease models & mechanisms‎
  • 2013‎

Post-operative increases in circulating bile acids have been suggested to contribute to the metabolic benefits of bariatric surgery; however, their mechanistic contributions remain undefined. We have previously reported that ileal interposition (IT) surgery delays the onset of type 2 diabetes in UCD-T2DM rats and increases circulating bile acids, independently of effects on energy intake or body weight. Therefore, we investigated potential mechanisms by which post-operative increases in circulating bile acids improve glucose homeostasis after IT surgery. IT, sham or no surgery was performed on 2-month-old weight-matched male UCD-T2DM rats. Animals underwent an oral fat tolerance test (OFTT) and serial oral glucose tolerance tests (OGTT). Tissues were collected at 1.5 and 4.5 months after surgery. Cell culture models were used to investigate interactions between bile acids and ER stress. IT-operated animals exhibited marked improvements in glucose and lipid metabolism, with concurrent increases in postprandial glucagon-like peptide-1 (GLP-1) secretion during the OFTT and OGTTs, independently of food intake and body weight. Measurement of circulating bile acid profiles revealed increases in circulating total bile acids in IT-operated animals, with a preferential increase in circulating cholic acid concentrations. Gut microbial populations were assessed as potential contributors to the increases in circulating bile acid concentrations, which revealed proportional increases in Gammaproteobacteria in IT-operated animals. Furthermore, IT surgery decreased all three sub-arms of ER stress signaling in liver, adipose and pancreas tissues. Amelioration of ER stress coincided with improved insulin signaling and preservation of β-cell mass in IT-operated animals. Incubation of hepatocyte, adipocyte and β-cell lines with cholic acid decreased ER stress. These results suggest that postoperative increases in circulating cholic acid concentration contribute to improvements in glucose homeostasis after IT surgery by ameliorating ER stress.


Validation of in vitro probabilistic tractography.

  • Tim B Dyrby‎ et al.
  • NeuroImage‎
  • 2007‎

Diffusion weighted imaging (DWI) and tractography allow the non-invasive study of anatomical brain connectivity. However, a gold standard for validating tractography of complex connections is lacking. Using the porcine brain as a highly gyrated brain model, we quantitatively and qualitatively assessed the anatomical validity and reproducibility of in vitro multi-fiber probabilistic tractography against two invasive tracers: the histochemically detectable biotinylated dextran amine and manganese enhanced magnetic resonance imaging. Post mortem DWI was used to ensure that most of the sources known to degrade the anatomical accuracy of in vivo DWI did not influence the tracking results. We demonstrate that probabilistic tractography reliably detected specific pathways. Moreover, the applied model allowed identification of the limitations that are likely to appear in many of the current tractography methods. Nevertheless, we conclude that DWI tractography can be a precise tool in studying anatomical brain connectivity.


Preservation of proliferating pancreatic progenitor cells by Delta-Notch signaling in the embryonic chicken pancreas.

  • Jonas Ahnfelt-Rønne‎ et al.
  • BMC developmental biology‎
  • 2007‎

Genetic studies have shown that formation of pancreatic endocrine cells in mice is dependent on the cell autonomous action of the bHLH transcription factor Neurogenin3 and that the extent and timing of endocrine differentiation is controlled by Notch signaling. To further understand the mechanism by which Notch exerts this function, we have investigated pancreatic endocrine development in chicken embryos.


The prefrontal cortex in the Göttingen minipig brain defined by neural projection criteria and cytoarchitecture.

  • Jacob Jelsing‎ et al.
  • Brain research bulletin‎
  • 2006‎

In an attempt to delineate the prefrontal cortex (PFC) in the Göttingen minipig brain the distribution of reciprocal thalamocortical projections was investigated using anterograde and retrograde tracing techniques and evaluated in relation to the specific cytoarchitectonic organization. Tracers were visualized using standard immunohistochemistry or evaluated in vivo using manganese (Mn2+) as an MRI paramagnetic tracer. The in vivo tract tracing turned out to be very sensitive with a high correspondence to the histological labelling. Tracers injected into the mediodorsal thalamus labelled the medial and rostral pole of the frontal lobe as well as the anterior cingulate, anterior insular and dorsomedial frontal cortices. Subsequently, the reciprocity and specificity of these connections were tested from injections into the traced frontal cortices indicating that the PFC has cortical connections to different parts of the MD nucleus. Although the granular layer IV, characteristic of primate PFC could not be identified, both cytoarchitectonic and connectional data suggests that the Göttingen minipig has a structurally divided prefrontal cortex. Stereological estimates of PFC volume showed that the Göttingen minipig PFC constitutes about 24% of the total neocortex volume and 10% of the total brain volume.


Application of the Physical Disector Principle for Quantification of Dopaminergic Neuronal Loss in a Rat 6-Hydroxydopamine Nigral Lesion Model of Parkinson's Disease.

  • Katrine Fabricius‎ et al.
  • Frontiers in neuroanatomy‎
  • 2017‎

Stereological analysis is the optimal tool for quantitative assessment of brain morphological and cellular changes induced by neurotoxic lesions or treatment interventions. Stereological methods based on random sampling techniques yield unbiased estimates of particle counts within a defined volume, thereby providing a true quantitative estimate of the target cell population. Neurodegenerative diseases involve loss of specific neuron types, such as the midbrain tyrosine hydroxylase-positive dopamine neurons in Parkinson's disease and in animal models of nigrostriatal degeneration. Therefore, we applied an established automated physical disector principle in a fractionator design for efficient stereological quantitative analysis of tyrosine hydroxylase (TH)-positive dopamine neurons in the substantia nigra pars compacta of hemiparkinsonian rats with unilateral 6-hydroxydopamine (6-OHDA) lesions. We obtained reliable estimates of dopamine neuron numbers, and established the relationship between behavioral asymmetry and dopamine neuron loss on the lesioned side. In conclusion, the automated physical disector principle provided a useful and efficient tool for unbiased estimation of TH-positive neurons in rat midbrain, and should prove valuable for investigating neuroprotective strategies in 6-OHDA model of parkinsonism, while generalizing to other immunohistochemically-defined cell populations.


INT-767 improves histopathological features in a diet-induced ob/ob mouse model of biopsy-confirmed non-alcoholic steatohepatitis.

  • Jonathan D Roth‎ et al.
  • World journal of gastroenterology‎
  • 2018‎

To characterize the efficacy of the dual FXR/TGR5 receptor agonist INT-767 upon histological endpoints in a rodent model of diet-induced and biopsy-confirmed non-alcoholic steatohepatitis (NASH).


Global transcriptome analysis of rat hypothalamic arcuate nucleus demonstrates reversal of hypothalamic gliosis following surgically and diet induced weight loss.

  • Pernille Barkholt‎ et al.
  • Scientific reports‎
  • 2019‎

The central mechanisms underlying the marked beneficial metabolic effects of bariatric surgery are unclear. Here, we characterized global gene expression in the hypothalamic arcuate nucleus (Arc) in diet-induced obese (DIO) rats following Roux-en-Y gastric bypass (RYGB). 60 days post-RYGB, the Arc was isolated by laser-capture microdissection and global gene expression was assessed by RNA sequencing. RYGB lowered body weight and adiposity as compared to sham-operated DIO rats. Discrete transcriptome changes were observed in the Arc following RYGB, including differential expression of genes associated with inflammation and neuropeptide signaling. RYGB reduced gene expression of glial cell markers, including Gfap, Aif1 and Timp1, confirmed by a lower number of GFAP immunopositive astrocyte profiles in the Arc. Sham-operated weight-matched rats demonstrated a similar glial gene expression signature, suggesting that RYGB and dietary restriction have common effects on hypothalamic gliosis. Considering that RYGB surgery also led to increased orexigenic and decreased anorexigenic gene expression, this may signify increased hunger-associated signaling at the level of the Arc. Hence, induction of counterregulatory molecular mechanisms downstream from the Arc may play an important role in RYGB-induced weight loss.


Human translatability of the GAN diet-induced obese mouse model of non-alcoholic steatohepatitis.

  • Henrik H Hansen‎ et al.
  • BMC gastroenterology‎
  • 2020‎

Animal models of non-alcoholic steatohepatitis (NASH) are important tools in preclinical research and drug discovery. Gubra-Amylin NASH (GAN) diet-induced obese (DIO) mice represent a model of fibrosing NASH. The present study directly assessed the clinical translatability of the model by head-to-head comparison of liver biopsy histological and transcriptome changes in GAN DIO-NASH mouse and human NASH patients.


Lipidated PrRP31 metabolites are long acting dual GPR10 and NPFF2 receptor agonists with potent body weight lowering effect.

  • Flora Alexopoulou‎ et al.
  • Scientific reports‎
  • 2022‎

Prolactin-releasing peptide (PrRP) is an endogenous neuropeptide involved in appetite regulation and energy homeostasis. PrRP binds with high affinity to G-protein coupled receptor 10 (GPR10) and with lesser activity towards the neuropeptide FF receptor type 2 (NPFF2R). The present study aimed to develop long-acting PrRP31 analogues with potent anti-obesity efficacy. A comprehensive series of C18 lipidated PrRP31 analogues was characterized in vitro and analogues with various GPR10 and NPFF2R activity profiles were profiled for bioavailability and metabolic effects following subcutaneous administration in diet-induced obese (DIO) mice. PrRP31 analogues acylated with a C18 lipid chain carrying a terminal acid (C18 diacid) were potent GPR10-selective agonists and weight-neutral in DIO mice. In contrast, acylation with aliphatic C18 lipid chain (C18) resulted in dual GPR10-NPFF2R co-agonists that suppressed food intake and promoted a robust weight loss in DIO mice, which was sustained for at least one week after last dosing. Rapid in vivo degradation of C18 PrRP31 analogues gave rise to circulating lipidated PrRP metabolites maintaining dual GPR10-NPFF2R agonist profile and long-acting anti-obesity efficacy in DIO mice. Combined GPR10 and NPFF2R activation may therefore be a critical mechanism for obtaining robust anti-obesity efficacy of PrRP31 analogues.


Integrative transcriptomic profiling of a mouse model of hypertension-accelerated diabetic kidney disease.

  • Frederikke E Sembach‎ et al.
  • Disease models & mechanisms‎
  • 2021‎

The current understanding of molecular mechanisms driving diabetic kidney disease (DKD) is limited, partly due to the complex structure of the kidney. To identify genes and signalling pathways involved in the progression of DKD, we compared kidney cortical versus glomerular transcriptome profiles in uninephrectomized (UNx) db/db mouse models of early-stage (UNx only) and advanced [UNxplus adeno-associated virus-mediated renin-1 overexpression (UNx-Renin)] DKD using RNAseq. Compared to normoglycemic db/m mice, db/db UNx and db/db UNx-Renin mice showed marked changes in their kidney cortical and glomerular gene expression profiles. UNx-Renin mice displayed more marked perturbations in gene components associated with the activation of the immune system and enhanced extracellular matrix remodelling, supporting histological hallmarks of progressive DKD in this model. Single-nucleus RNAseq enabled the linking of transcriptome profiles to specific kidney cell types. In conclusion, integration of RNAseq at the cortical, glomerular and single-nucleus level provides an enhanced resolution of molecular signalling pathways associated with disease progression in preclinical models of DKD, and may thus be advantageous for identifying novel therapeutic targets in DKD.


Deep learning reveals 3D atherosclerotic plaque distribution and composition.

  • Vanessa Isabell Jurtz‎ et al.
  • Scientific reports‎
  • 2020‎

Complications of atherosclerosis are the leading cause of morbidity and mortality worldwide. Various genetically modified mouse models are used to investigate disease trajectory with classical histology, currently the preferred methodology to elucidate plaque composition. Here, we show the strength of light-sheet fluorescence microscopy combined with deep learning image analysis for characterising and quantifying plaque burden and composition in whole aorta specimens. 3D imaging is a non-destructive method that requires minimal ex vivo handling and can be up-scaled to large sample sizes. Combined with deep learning, atherosclerotic plaque in mice can be identified without any ex vivo staining due to the autofluorescent nature of the tissue. The aorta and its branches can subsequently be segmented to determine how anatomical position affects plaque composition and progression. Here, we find the highest plaque accumulation in the aortic arch and brachiocephalic artery. Simultaneously, aortas can be stained for markers of interest (for example the pan immune cell marker CD45) and quantified. In ApoE-/- mice we observe that levels of CD45 reach a plateau after which increases in plaque volume no longer correlate to immune cell infiltration. All underlying code is made publicly available to ease adaption of the method.


Rat pancreatectomy combined with isoprenaline or uninephrectomy as models of diabetic cardiomyopathy or nephropathy.

  • Louise Thisted‎ et al.
  • Scientific reports‎
  • 2020‎

Cardiovascular and renal complications are the predominant causes of morbidity and mortality amongst patients with diabetes. Development of novel treatments have been hampered by the lack of available animal models recapitulating the human disease. We hypothesized that experimental diabetes in rats combined with a cardiac or renal stressor, would mimic diabetic cardiomyopathy and nephropathy, respectively. Diabetes was surgically induced in male Sprague Dawley rats by 90% pancreatectomy (Px). Isoprenaline (Iso, 1 mg/kg, sc., 10 days) was administered 5 weeks after Px with the aim of inducing cardiomyopathy, and cardiac function and remodeling was assessed by echocardiography 10 weeks after surgery. Left ventricular (LV) fibrosis was quantified by Picro Sirius Red and gene expression analysis. Nephropathy was induced by Px combined with uninephrectomy (Px-UNx). Kidney function was assessed by measurement of glomerular filtration rate (GFR) and urine albumin excretion, and kidney injury was evaluated by histopathology and gene expression analysis. Px resulted in stable hyperglycemia, hypoinsulinemia, decreased C-peptide, and increased glycated hemoglobin (HbA1c) compared with sham-operated controls. Moreover, Px increased heart and LV weights and dimensions and caused a shift from α-myosin heavy chain (MHC) to β-MHC gene expression. Isoprenaline treatment, but not Px, decreased ejection fraction and induced LV fibrosis. There was no apparent interaction between Px and Iso treatment. The superimposition of Px and UNx increased GFR, indicating hyperfiltration. Compared with sham-operated controls, Px-UNx induced albuminuria and increased urine markers of kidney injury, including neutrophil gelatinase-associated lipocalin (NGAL) and podocalyxin, concomitant with upregulated renal gene expression of NGAL and kidney injury molecule 1 (KIM-1). Whereas Px and isoprenaline separately produced clinical endpoints related to diabetic cardiomyopathy, the combination of the two did not accentuate disease development. Conversely, Px in combination with UNx resulted in several clinical hallmarks of diabetic nephropathy indicative of early disease development.


An inhibitor-mediated beta-cell dedifferentiation model reveals distinct roles for FoxO1 in glucagon repression and insulin maturation.

  • Tamara Casteels‎ et al.
  • Molecular metabolism‎
  • 2021‎

The loss of forkhead box protein O1 (FoxO1) signaling in response to metabolic stress contributes to the etiology of type II diabetes, causing the dedifferentiation of pancreatic beta cells to a cell type reminiscent of endocrine progenitors. Lack of methods to easily model this process in vitro, however, have hindered progress into the identification of key downstream targets and potential inhibitors. We therefore aimed to establish such an in vitro cellular dedifferentiation model and apply it to identify novel agents involved in the maintenance of beta-cell identity.


TAAR1 agonists improve glycemic control, reduce body weight and modulate neurocircuits governing energy balance and feeding.

  • Nina Dedic‎ et al.
  • Molecular metabolism‎
  • 2024‎

Metabolic Syndrome, which can be induced or exacerbated by current antipsychotic drugs (APDs), is highly prevalent in schizophrenia patients. Recent preclinical and clinical evidence suggest that agonists at trace amine-associated receptor 1 (TAAR1) have potential as a new treatment option for schizophrenia. Intriguingly, preclinical tudies have also identified TAAR1 as a novel regulator of metabolic control. Here we evaluated the effects of three TAAR1 agonists, including the clinical development candidate ulotaront, on body weight, metabolic parameters and modulation of neurocircuits implicated in homeostatic and hedonic feeding.


Hypertrophy dependent doubling of L-cells in Roux-en-Y gastric bypass operated rats.

  • Carl Frederik Hansen‎ et al.
  • PloS one‎
  • 2013‎

Roux-en-Y gastric bypass (RYGB) leads to a rapid remission of type 2 diabetes mellitus (T2DM), but the underlying mode of action remains incompletely understood. L-cell derived gut hormones such as glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are thought to play a central role in the anti-diabetic effects of RYGB; therefore, an improved understanding of intestinal endocrine L-cell adaptability is considered pivotal.


The GLP-1 Analogs Liraglutide and Semaglutide Reduce Atherosclerosis in ApoE-/- and LDLr-/- Mice by a Mechanism That Includes Inflammatory Pathways.

  • Günaj Rakipovski‎ et al.
  • JACC. Basic to translational science‎
  • 2018‎

The glucagon-like peptide-1 receptor agonists (GLP-1RAs) liraglutide and semaglutide reduce cardiovascular risk in type 2 diabetes patients. The mode of action is suggested to occur through modified atherosclerotic progression. In this study, both of the compounds significantly attenuated plaque lesion development in apolipoprotein E-deficient (ApoE-/-) mice and low-density lipoprotein receptor-deficient (LDLr-/-) mice. This attenuation was partly independent of weight and cholesterol lowering. In aortic tissue, exposure to a Western diet alters expression of genes in pathways relevant to the pathogenesis of atherosclerosis, including leukocyte recruitment, leukocyte rolling, adhesion/extravasation, cholesterol metabolism, lipid-mediated signaling, extracellular matrix protein turnover, and plaque hemorrhage. Treatment with semaglutide significantly reversed these changes. These data suggest GLP-1RAs affect atherosclerosis through an anti-inflammatory mechanism.


An improved method for three-dimensional reconstruction of protein expression patterns in intact mouse and chicken embryos and organs.

  • Jonas Ahnfelt-Rønne‎ et al.
  • The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society‎
  • 2007‎

We have developed a wholemount immunofluorescence protocol for the simultaneous detection of up to three proteins in mouse and chicken embryos. Combined with Murray's clearing reagent (BABB) and microscope objectives with long working ranges and high numerical apertures mounted on a confocal microscope, cellular resolution can be obtained in depths offering the possibility of examining expression patterns in entire organs or embryos. Three-dimensional projections of the optical confocal sections can be computed with computer software allowing rotation around any axis. The protocol is robust and we find that most antibodies working on tissue sections also work with this protocol. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.


Long-Term Treatment with Liraglutide, a Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist, Has No Effect on β-Amyloid Plaque Load in Two Transgenic APP/PS1 Mouse Models of Alzheimer's Disease.

  • Henrik H Hansen‎ et al.
  • PloS one‎
  • 2016‎

One of the major histopathological hallmarks of Alzheimer's disease (AD) is cerebral deposits of extracellular β-amyloid peptides. Preclinical studies have pointed to glucagon-like peptide 1 (GLP-1) receptors as a potential novel target in the treatment of AD. GLP-1 receptor agonists, including exendin-4 and liraglutide, have been shown to promote plaque-lowering and mnemonic effects of in a number of experimental models of AD. Transgenic mouse models carrying genetic mutations of amyloid protein precursor (APP) and presenilin-1 (PS1) are commonly used to assess the pharmacodynamics of potential amyloidosis-lowering and pro-cognitive compounds. In this study, effects of long-term liraglutide treatment were therefore determined in two double APP/PS1 transgenic mouse models of Alzheimer's disease carrying different clinical APP/PS1 mutations, i.e. the 'London' (hAPPLon/PS1A246E) and 'Swedish' mutation variant (hAPPSwe/PS1ΔE9) of APP, with co-expression of distinct PS1 variants. Liraglutide was administered in 5 month-old hAPPLon/PS1A246E mice for 3 months (100 or 500 ng/kg/day, s.c.), or 7 month-old hAPPSwe/PS1ΔE9 mice for 5 months (500 ng/kg/day, s.c.). In both models, regional plaque load was quantified throughout the brain using stereological methods. Vehicle-dosed hAPPSwe/PS1ΔE9 mice exhibited considerably higher cerebral plaque load than hAPPLon/PS1A246E control mice. Compared to vehicle-dosed transgenic controls, liraglutide treatment had no effect on the plaque levels in hAPPLon/PS1A246E and hAPPSwe/PS1ΔE9 mice. In conclusion, long-term liraglutide treatment exhibited no effect on cerebral plaque load in two transgenic mouse models of low- and high-grade amyloidosis, which suggests differential sensitivity to long-term liraglutide treatment in various transgenic mouse models mimicking distinct pathological hallmarks of AD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: