2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Axial Impairment Following Deep Brain Stimulation in Parkinson's Disease: A Surgicogenomic Approach.

  • Naomi P Visanji‎ et al.
  • Journal of Parkinson's disease‎
  • 2022‎

Postoperative outcome following deep brain stimulation (DBS) of the subthalamic nucleus is variable, particularly with respect to axial motor improvement. We hypothesized a genetic underpinning to the response to surgical intervention, termed "surgicogenomics".


Contributions of a high-fat diet to Alzheimer's disease-related decline: A longitudinal behavioural and structural neuroimaging study in mouse models.

  • Colleen P E Rollins‎ et al.
  • NeuroImage. Clinical‎
  • 2019‎

Obesity is recognized as a significant risk factor for Alzheimer's disease (AD). Studies have supported that obesity accelerates AD-related pathophysiology and memory impairment in mouse models of AD. However, the nature of the brain structure-behaviour relationship mediating this acceleration remains unclear. In this manuscript we evaluated the impact of adolescent obesity on the brain morphology of the triple transgenic mouse model of AD (3xTg) and a non-transgenic control model of the same background strain (B6129s) using longitudinally acquired structural magnetic resonance imaging (MRI). At 8 weeks of age, animals were placed on a high-fat diet (HFD) or an ingredient-equivalent control diet (CD). Structural images were acquired at 8, 16, and 24 weeks. At 25 weeks, animals underwent the novel object recognition (NOR) task and the Morris water maze (MWM) to assess short-term non-associative memory and spatial memory, respectively. All analyses were carried out across four groups: B6129s-CD and -HFD and 3xTg-CD and -HFD. Neuroanatomical changes in MRI-derived brain morphology were assessed using volumetric and deformation-based analyses. HFD-induced obesity during adolescence exacerbated brain volume alterations by adult life in the 3xTg mouse model in comparison to control-fed mice and mediated volumetric alterations of select brain regions, such as the hippocampus. Further, HFD-induced obesity aggravated memory in all mice, lowering certain memory measures of B6129s control mice to the level of 3xTg mice maintained on a CD. Moreover, decline in the volumetric trajectories of hippocampal regions for all mice were associated with the degree of spatial memory impairments on the MWM. Our results suggest that obesity may interact with the brain changes associated with AD-related pathology in the 3xTg mouse model to aggravate brain atrophy and memory impairments and similarly impair brain structural integrity and memory capacity of non-transgenic mice. Further insight into this process may have significant implications in the development of lifestyle interventions for treatment of AD.


Longitudinal changes in cocaine intake and cognition are linked to cortical thickness adaptations in cocaine users.

  • Sarah Hirsiger‎ et al.
  • NeuroImage. Clinical‎
  • 2019‎

Cocaine use has been consistently associated with decreased gray matter volumes in the prefrontal cortex. However, it is unclear if such neuroanatomical abnormalities depict either pre-existing vulnerability markers or drug-induced consequences. Thus, this longitudinal MRI study investigated neuroplasticity and cognitive changes in relation to altered cocaine intake.


Transcranial Direct Current Stimulation Reduces Anxiety, Depression and Plasmatic Corticosterone in a Rat Model of Atypical Generalized Epilepsy.

  • Flavia Venetucci Gouveia‎ et al.
  • Neuroscience‎
  • 2022‎

Affective disorders (i.e. anxiety and depression) are commonly observed in patients with epilepsy and induce seizure aggravation. Animal models of epilepsy that exhibit affective disorder features are essential in developing new neuromodulatory treatments. GEAS-W rats (Generalized Epilepsy with Absence Seizures, Wistar background) are an inbred model of generalized epilepsy showing spontaneous spike-wave discharges concomitant with immobility. Transcranial Direct Current Stimulation (tDCS) is a safe non-invasive neuromodulatory therapy used to modulate dysfunctional circuitries frequently and successfully applied in affective disorders for symptom alleviation. Here we investigated anxiolytic and antidepressant effects of tDCS in GEAS-W rats and the role of corticosterone as a possible mechanism of action. GEAS-W and Wistar rats were randomly divided into control, sham-tDCS and active-tDCS groups. Both tDCS groups received 15 sessions of sham or active-tDCS (1 mA, cathode). Behavioural tests included the Open Field and Forced Swimming tests followed by corticosterone analysis. We observed a main effect of treatment and a significant treatment by strain interaction on anxiety-like and depressive-like behaviours, with active-tDCS GEAS-W rats entering the center of the open field more often and showing less immobility in the forced swimming test. Furthermore, there was a main effect of treatment on corticosterone with active-tDCS animals showing marked reduction in plasmatic levels. This study described preclinical evidence to support tDCS treatment of affective disorders in epilepsy and highlights corticosterone as a possible mechanism of action.


Involvement of the habenula in the pathophysiology of autism spectrum disorder.

  • Jürgen Germann‎ et al.
  • Scientific reports‎
  • 2021‎

The habenula is a small epithalamic structure with widespread connections to multiple cortical, subcortical and brainstem regions. It has been identified as the central structure modulating the reward value of social interactions, behavioral adaptation, sensory integration and circadian rhythm. Autism spectrum disorder (ASD) is characterized by social communication deficits, restricted interests, repetitive behaviors, and is frequently associated with altered sensory perception and mood and sleep disorders. The habenula is implicated in all these behaviors and results of preclinical studies suggest a possible involvement of the habenula in the pathophysiology of this disorder. Using anatomical magnetic resonance imaging and automated segmentation we show that the habenula is significantly enlarged in ASD subjects compared to controls across the entire age range studied (6-30 years). No differences were observed between sexes. Furthermore, support-vector machine modeling classified ASD with 85% accuracy (model using habenula volume, age and sex) and 64% accuracy in cross validation. The Social Responsiveness Scale (SRS) significantly differed between groups, however, it was not related to individual habenula volume. The present study is the first to provide evidence in human subjects of an involvement of the habenula in the pathophysiology of ASD.


A high-resolution in vivo magnetic resonance imaging atlas of the human hypothalamic region.

  • Clemens Neudorfer‎ et al.
  • Scientific data‎
  • 2020‎

The study of the hypothalamus and its topological changes provides valuable insights into underlying physiological and pathological processes. Owing to technological limitations, however, in vivo atlases detailing hypothalamic anatomy are currently lacking in the literature. In this work we aim to overcome this shortcoming by generating a high-resolution in vivo anatomical atlas of the human hypothalamic region. A minimum deformation averaging (MDA) pipeline was employed to produce a normalized, high-resolution template from multimodal magnetic resonance imaging (MRI) datasets. This template was used to delineate hypothalamic (n = 13) and extrahypothalamic (n = 12) gray and white matter structures. The reliability of the atlas was evaluated as a measure for voxel-wise volume overlap among raters. Clinical application was demonstrated by superimposing the atlas into datasets of patients diagnosed with a hypothalamic lesion (n = 1) or undergoing hypothalamic (n = 1) and forniceal (n = 1) deep brain stimulation (DBS). The present template serves as a substrate for segmentation of brain structures, specifically those featuring low contrast. Conversely, the segmented hypothalamic atlas may inform DBS programming procedures and may be employed in volumetric studies.


Bilateral Amygdala Radio-Frequency Ablation for Refractory Aggressive Behavior Alters Local Cortical Thickness to a Pattern Found in Non-refractory Patients.

  • Flavia Venetucci Gouveia‎ et al.
  • Frontiers in human neuroscience‎
  • 2021‎

Aggressive behaviors comprise verbal and/or physical aggression directed toward oneself, others, or objects and are highly prevalent among psychiatric patients, especially patients diagnosed with autism spectrum disorder and severe intellectual disabilities. Some of these patients are considered refractory to treatment, and functional neurosurgery targeting the amygdala can result in widespread plastic brain changes that might reflect ceasing of some abnormal brain function, offering symptom alleviation. This study investigated cortical thickness changes in refractory aggressive behavior patients that were treated with bilateral amygdala ablation and compared to control patients presenting non-refractory aggressive behavior [three refractory and seven non-refractory patients, all males diagnosed with autism spectrum disorder (ASD) and intellectual disabilities]. The Overt Aggression Scale (OAS) was used to quantify behavior and magnetic resonance imaging was performed to investigate cortical thickness. Before surgery, both groups presented similar total OAS score, however refractory patients presented higher physical aggression against others. After surgery the refractory group showed 88% average reduction of aggressive behavior. Imaging analysis showed that while refractory patients present an overall reduction in cortical thickness compared to non-refractory patients across both timepoints, the local pattern of thickness difference found in areas of the neurocircuitry of aggressive behavior present before surgery is diminished and no longer detected after surgery. These results corroborate the hypotheses on induction of widespread neuronal plasticity following functional neurosurgical procedures resulting in modifications in brain morphology and improvement in behavior. Further studies are necessary to determine the underlying cause of these morphological changes and to better understand and improve treatment options.


Identification of neural networks preferentially engaged by epileptogenic mass lesions through lesion network mapping analysis.

  • Alireza M Mansouri‎ et al.
  • Scientific reports‎
  • 2020‎

Lesion network mapping (LNM) has been applied to true lesions (e.g., cerebrovascular lesions in stroke) to identify functionally connected brain networks. No previous studies have utilized LNM for analysis of intra-axial mass lesions. Here, we implemented LNM for identification of potentially vulnerable epileptogenic networks in mass lesions causing medically-refractory epilepsy (MRE). Intra-axial brain lesions were manually segmented in patients with MRE seen at our institution (EL_INST). These lesions were then normalized to standard space and used as seeds in a high-resolution normative resting state functional magnetic resonance imaging template. The resulting connectivity maps were first thresholded (pBonferroni_cor < 0.05) and binarized; the thresholded binarized connectivity maps were subsequently summed to produce overall group connectivity maps, which were compared with established resting-state networks to identify potential networks prone to epileptogenicity. To validate our data, this approach was also applied to an external dataset of epileptogenic lesions identified from the literature (EL_LIT). As an additional exploratory analysis, we also segmented and computed the connectivity of institutional non-epileptogenic lesions (NEL_INST), calculating voxel-wise odds ratios (VORs) to identify voxels more likely to be functionally-connected with EL_INST versus NEL_INST. To ensure connectivity results were not driven by anatomical overlap, the extent of lesion overlap between EL_INST, and EL_LIT and NEL_INST was assessed using the Dice Similarity Coefficient (DSC, lower index ~ less overlap). Twenty-eight patients from our institution were included (EL_INST: 17 patients, 17 lesions, 10 low-grade glioma, 3 cavernoma, 4 focal cortical dysplasia; NEL_INST: 11 patients, 33 lesions, all brain metastases). An additional 23 cases (25 lesions) with similar characteristics to the EL_INST data were identified from the literature (EL_LIT). Despite minimal anatomical overlap of lesions, both EL_INST and EL_LIT showed greatest functional connectivity overlap with structures in the Default Mode Network, Frontoparietal Network, Ventral Attention Network, and the Limbic Network-with percentage volume overlap of 19.5%, 19.1%, 19.1%, and 12.5%, respectively-suggesting them as networks consistently engaged by epileptogenic mass lesions. Our exploratory analysis moreover showed that the mesial frontal lobes, parahippocampal gyrus, and lateral temporal neocortex were at least twice as likely to be functionally connected with the EL_INST compared to the NEL_INST group (i.e. Peak VOR > 2.0); canonical resting-state networks preferentially engaged by EL_INSTs were the Limbic and the Frontoparietal Networks (Mean VOR > 1.5). In this proof of concept study, we demonstrate the feasibility of LNM for intra-axial mass lesions by showing that ELs have discrete functional connections and may preferentially engage in discrete resting-state networks. Thus, the underlying normative neural circuitry may, in part, explain the propensity of particular lesions toward the development of MRE. If prospectively validated, this has ramifications for patient counseling along with both approach and timing of surgery for lesions in locations prone to development of MRE.


Spinal Cord Stimulation for Parkinson's Disease: A Systematic Review and Meta-Analysis of Pain and Motor Outcomes.

  • Can Sarica‎ et al.
  • Stereotactic and functional neurosurgery‎
  • 2023‎

Spinal cord stimulation (SCS) has been investigated as a potential therapeutic option for managing refractory symptoms in patients with Parkinson's disease (PD).


Oxytocin and Gynecomastia: Correlation or Causality?

  • Leticia Amorim‎ et al.
  • Cureus‎
  • 2018‎

Oxytocin has been administered to patients with autism spectrum disorder (ASD) in order to improve social skills, communication, and manage repetitive behaviors in the context of research trials. The majority of the studies focus on acute administration; thus, the effectiveness and potential side effects of chronic administration remain unknown. The main goal of this case report is to highlight the importance of the safety parameters for the chronic use of intranasal oxytocin administration. In a single case conducted in our outpatient clinic, one adolescent (15 years old) received intranasal oxytocin (24 IU) twice per day, in accordance with the recommended doses for this age group that varies from 8 - 25 IU twice per day. After three weeks of treatment, the patient presented with gynecomastia. While it is not certain that the gynecomastia was oxytocin-induced, this case highlights the importance of developing optimal regimens for chronic oxytocin administration, with a particular focus on safety parameters.


Wanted dead or alive? The tradeoff between in-vivo versus ex-vivo MR brain imaging in the mouse.

  • Jason P Lerch‎ et al.
  • Frontiers in neuroinformatics‎
  • 2012‎

High-resolution MRI of the mouse brain is gaining prominence in estimating changes in neuroanatomy over time to understand both normal developmental as well as disease processes and mechanisms. These types of experiments, where a change in time is to be captured as accurately as possible using imaging, face multiple experimental design choices. Chief amongst these choices is whether to image ex-vivo, where superior resolution and contrast are available, or in-vivo, where resolution and contrast are lower but the animal can be followed longitudinally. Here we explore this tradeoff by first estimating the sources of variability in anatomical mouse MRI and then, using statistical simulations, provide power analyses of these experiment design choices.


Deep Brain Stimulation of the Habenula: Systematic Review of the Literature and Clinical Trial Registries.

  • Jürgen Germann‎ et al.
  • Frontiers in psychiatry‎
  • 2021‎

The habenula is a small bilateral epithalamic structure that plays a key role in the regulation of the main monoaminergic systems. It is implicated in many aspects of behavior such as reward processing, motivational behavior, behavioral adaptation, and sensory integration. A role of the habenula has been indicated in the pathophysiology of a number of neuropsychiatric disorders such as depression, addiction, obsessive-compulsive disorder, and bipolar disorder. Neuromodulation of the habenula using deep brain stimulation (DBS) as potential treatment has been proposed and a first successful case of habenula DBS was reported a decade ago. To provide an overview of the current state of habenula DBS in human subjects for the treatment of neuropsychiatric disorders we conducted a systematic review of both the published literature using PUBMED and current and past registered clinical trials using ClinicalTrials.gov as well as the International Clinical Trials Registry Platform. Using PRISMA guidelines five articles and five registered clinical trials were identified. The published articles detailed the results of habenula DBS for the treatment of schizophrenia, depression, obsessive-compulsive disorder, and bipolar disorder. Four are single case studies; one reports findings in two patients and positive clinical outcome is described in five of the six patients. Of the five registered clinical trials identified, four investigate habenula DBS for the treatment of depression and one for obsessive-compulsive disorder. One trial is listed as terminated, one is recruiting, two are not yet recruiting and the status of the fifth is unknown. The planned enrollment varies between 2 to 13 subjects and four of the five are open label trials. While the published studies suggest a potential role of habenula DBS for a number of indications, future trials and studies are necessary. The outcomes of the ongoing clinical trials will provide further valuable insights. Establishing habenula DBS, however, will depend on successful randomized clinical trials to confirm application and clinical benefit of this promising intervention.


Refractoriness of aggressive behaviour to pharmacological treatment: cortical thickness analysis in autism spectrum disorder.

  • Flavia Venetucci Gouveia‎ et al.
  • BJPsych open‎
  • 2020‎

Aggressive behaviour is a highly prevalent and devastating condition in autism spectrum disorder resulting in impoverished quality of life. Gold-standard therapies are ineffective in about 30% of patients leading to greater suffering. We investigated cortical thickness in individuals with autism spectrum disorder with pharmacological-treatment-refractory aggressive behaviour compared with those with non-refractory aggressive behaviour and observed a brain-wide pattern of local increased thickness in key areas related to emotional control and overall decreased cortical thickness in those with refractory aggressive behaviour, suggesting refractoriness could be related to specific morphological patterns. Elucidating the neurobiology of refractory aggressive behaviour is crucial to provide insights and potential avenues for new interventions.


Brain structures and networks responsible for stimulation-induced memory flashbacks during forniceal deep brain stimulation for Alzheimer's disease.

  • Jürgen Germann‎ et al.
  • Alzheimer's & dementia : the journal of the Alzheimer's Association‎
  • 2021‎

Fornix deep brain stimulation (fx-DBS) is under investigation for treatment of Alzheimer's disease (AD). We investigated the anatomic correlates of flashback phenomena that were reported previously during acute diencephalic stimulation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: