Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Translocation of phosducin in living neuroblastoma x glioma hybrid cells (NG 108-15) monitored by red-shifted green fluorescent protein.

  • R Schulz‎ et al.
  • Brain research‎
  • 1998‎

Activation of G protein-coupled receptors triggers translocation of certain proteins from cytoplasm to cell membrane located targets. One of these cytosolic proteins is phosducin (Phd) which has been described to compete with G protein-coupled receptor kinases for Gbetagamma dimers attached to the cell membrane, thereby attenuating desensitization of activated receptors. These features of protein redistribution prompted us to examine whether stimulation of membrane associated E-prostaglandin receptors coupled to Gs causes Phd to migrate towards the plasma membrane. We made use of enhanced green fluorescence protein (EGFP), a reporter protein, to follow redistribution of Phd both by means of confocal microscopy and biochemical techniques in living neuronal NG 108-15 hybrid cells challenged with prostaglandin E1 (PGE1). The cells were transiently transfected to express Phd fused to the C-terminus of EGFP, or to express EGFP only. Overexpression of the proteins is implied by FACS analysis as well as by western blot technique, and the functional integrity of EGFP-tagged Phd was confirmed by its ability to elevate cAMP accumulation. Time-lapse imaging of single living cells by means of confocal microscopy revealed that exposure to prostaglandin causes EGFP/Phd, which is evenly spread throughout the cell, to relocate towards the membrane within few minutes. Fluorescence associated with the cell nucleus displayed little rearrangement. The principle finding that prostaglandin triggers translocation of Phd from cytosol to the cell periphery was verified with membranes prepared from EGFP/Phd expressing cells. We found maximal concentrations of membrane associated fluorescent material 5 to 7 min upon prostaglandin exposure. The present study reports for living NG 108-15 hybrid cells that PGE1 stimulation causes cytosolic Phd to translocate towards the membrane, where it is believed to bind to G protein subunits such as Gbetagamma and Galphas.


Cytokinesis mediated through the recruitment of cortexillins into the cleavage furrow.

  • I Weber‎ et al.
  • The EMBO journal‎
  • 1999‎

The fact that substrate-anchored Dictyostelium cells undergo cytokinesis in the absence of myosin II underscores the importance of other proteins in enabling the cleavage furrow to constrict. Cortexillins, a pair of actin-bundling proteins, are required for normal cleavage. They are targeted to the incipient furrow in wild-type and, more prominently, in myosin II-null cells. No other F-actin bundling or cross-linking protein tested is co-localized. Green fluorescent protein fusions show that the N-terminal actin-binding domain of cortexillin I is dispensable and the C-terminal region is sufficient for translocation to the furrow and the rescue of cytokinesis. Cortexillins are suggested to have a targeting signal for coupling to a myosin II-independent system that directs transport of membrane proteins to the cleavage furrow.


Perioperative outcomes and adverse events of robotic colorectal resections for inflammatory bowel disease: a systematic literature review.

  • S Renshaw‎ et al.
  • Techniques in coloproctology‎
  • 2018‎

The purpose of this study was to assess outcome measures and cost-effectiveness of robotic colorectal resections in adult patients with inflammatory bowel disease. The Cochrane Library, PubMed/Medline and Embase databases were reviewed, using the text "robotic(s)" AND ("inflammatory bowel disease" OR "Crohn's" OR "Ulcerative Colitis"). Two investigators screened abstracts for eligibility. All English language full-text articles were reviewed for specified outcomes. Data were presented in a summarised and aggregate form, since the lack of higher-level evidence studies precluded meta-analysis. Primary outcomes included mortality and postoperative complications. Secondary outcomes included readmission rate, length of stay, conversion rate, procedure time, estimated blood loss and functional outcome. The tertiary outcome was cost-effectiveness. Eight studies (3 case-matched observational studies, 4 case series and 1 case report) met the inclusion criteria. There was no reported mortality. Overall, complications occurred in 81 patients (54%) including 30 (20%) Clavien-Dindo III-IV complications. Mean length of stay was 8.6 days. Eleven cases (7.3%) were converted to open. The mean robotic operating time was 99 min out of a mean total operating time of 298.6 min. Thirty-two patients (24.7%) were readmitted. Functional outcomes were comparable among robotic, laparoscopic and open approaches. Case-matched observational studies comparing robotic to laparoscopic surgery revealed a significantly longer procedure time; however, conversion, complication, length of stay and readmission rates were similar. The case-matched observational study comparing robotic to open surgery also revealed a longer procedure time and a higher readmission rate; postoperative complication rates and length of stay were similar. No studies compared cost-effectiveness between robotic and traditional approaches. Although robotic resections for inflammatory bowel disease are technically feasible, outcomes must be interpreted with caution due to low-quality studies.


TNF can activate RIPK3 and cause programmed necrosis in the absence of RIPK1.

  • D M Moujalled‎ et al.
  • Cell death & disease‎
  • 2013‎

Ligation of tumor necrosis factor receptor 1 (TNFR1) can cause cell death by caspase 8 or receptor-interacting protein kinase 1 (RIPK1)- and RIPK3-dependent mechanisms. It has been assumed that because RIPK1 bears a death domain (DD), but RIPK3 does not, RIPK1 is necessary for recruitment of RIPK3 into signaling and death-inducing complexes. To test this assumption, we expressed elevated levels of RIPK3 in murine embryonic fibroblasts (MEFs) from wild-type (WT) and gene-deleted mice, and exposed them to TNF. Neither treatment with TNF nor overexpression of RIPK3 alone caused MEFs to die, but when levels of RIPK3 were increased, addition of TNF killed WT, Ripk1(-/-), caspase 8(-/-), and Bax(-/-)/Bak(-/-) MEFs, even in the presence of the broad-spectrum caspase inhibitor Q-VD-OPh. In contrast, Tnfr1(-/-) and Tradd(-/-) MEFs did not die. These results show for the first time that in the absence of RIPK1, TNF can activate RIPK3 to induce cell death both by a caspase 8-dependent mechanism and by a separate Bax/Bak- and caspase-independent mechanism. RIPK1 is therefore not essential for TNF to activate RIPK3 to induce necroptosis nor for the formation of a functional ripoptosome/necrosome.


Temporal differences in the appearance of NEP-B78 and an LBR-like protein during Xenopus nuclear envelope reassembly reflect the ordered recruitment of functionally discrete vesicle types.

  • S Drummond‎ et al.
  • The Journal of cell biology‎
  • 1999‎

In this work, we have used novel mAbs against two proteins of the endoplasmic reticulum and outer nuclear membrane, termed NEP-B78 and p65, in addition to a polyclonal antibody against the inner nuclear membrane protein LBR (lamin B receptor), to study the order and dynamics of NE reassembly in the Xenopus cell-free system. Using these reagents, we demonstrate differences in the timing of recruitment of their cognate membrane proteins to the surface of decondensing chromatin in both the cell-free system and XLK-2 cells. We show unequivocally that, in the cell-free system, two functionally and biochemically distinct vesicle types are necessary for NE assembly. We find that the process of distinct vesicle recruitment to chromatin is an ordered one and that NEP-B78 defines a vesicle population involved in the earliest events of reassembly in this system. Finally, we present evidence that NEP-B78 may be required for the targeting of these vesicles to the surface of decondensing chromatin in this system. The results have important implications for the understanding of the mechanisms of nuclear envelope disassembly and reassembly during mitosis and for the development of systems to identify novel molecules that control these processes.


Brain scintigraphy: sinus pericranii.

  • J R Sty‎ et al.
  • Clinical nuclear medicine‎
  • 1981‎

No abstract available


Comparative effectiveness of physical activity interventions and anti-hypertensive pharmacological interventions in reducing blood pressure in people with hypertension: protocol for a systematic review and network meta-analysis.

  • C Noone‎ et al.
  • Systematic reviews‎
  • 2018‎

The prevalence of hypertension is a major public health challenge. Despite it being highly preventable, hypertension is responsible for a significant proportion of global morbidity and mortality. Common methods for controlling hypertension include prescribing anti-hypertensive medication, a pharmacological approach, and increasing physical activity, a behavioural approach. In general, little is known about the comparative effectiveness of pharmacological and behavioural approaches for reducing blood pressure in hypertension. A previous network meta-analysis suggested that physical activity interventions may be just as effective as many anti-hypertensive medications in preventing mortality; however, this analysis did not provide the comparative effectiveness of these disparate modes of intervention on blood pressure reduction. The primary objective of this study is to use network meta-analysis to compare the relative effectiveness, for blood pressure reduction, of different approaches to increasing physical activity and different first-line anti-hypertensive therapies in people with hypertension.


Cortexillins, major determinants of cell shape and size, are actin-bundling proteins with a parallel coiled-coil tail.

  • J Faix‎ et al.
  • Cell‎
  • 1996‎

Cortexillins I and II of D. discoideum constitute a novel subfamily of proteins with actin-binding sites of the alpha-actinin/spectrin type. The C-terminal halves of these dimeric proteins contain a heptad repeat domain by which the two subunits are joined to form a two-stranded, parallel coiled coil, giving rise to a 19 nm tail. The N-terminal domains that encompass a consensus actin-binding sequence are folded into globular heads. Cortexillin-linked actin filaments form preferentially anti-parallel bundles that associate into meshworks. Both cortexillins are enriched in the cortex of locomoting cells, primarily at the anterior and posterior ends. Elimination of the two isoforms by gene disruption gives rise to large, flattened cells with rugged boundaries, portions of which are often connected by thin cytoplasmic bridges. The double-mutant cells are multinucleate owing to a severe impairment of cytokinesis.


Lessons from a theory of change-driven evaluation of a global mental health funding portfolio.

  • G Miguel Esponda‎ et al.
  • International journal of mental health systems‎
  • 2021‎

Given the underinvestment in global mental health to-date, it is important to consider how best to maximize the impact of existing investments. Theory of Change (ToC) is increasingly attracting the interest of funders seeking to evaluate their own impact. This is one of four papers investigating Grand Challenges Canada's (GCC's) first global mental health research funding portfolio (2012-2016) using a ToC-driven approach.


The IQGAP-related protein DGAP1 interacts with Rac and is involved in the modulation of the F-actin cytoskeleton and control of cell motility.

  • J Faix‎ et al.
  • Journal of cell science‎
  • 1998‎

DGAP1 of Dictyostelium discoideum is a cell cortex associated 95 kDa protein that shows homology to both RasGTPase-activating proteins (RasGAPs) and RasGAP-related proteins. When tested for RasGAP activity, recombinant DGAP1 protein did not promote the GTPase activity of human H-Ras or of Dictyostelium RasG in vitro. Instead, DGAP1 bound to Dictyostelium Rac1A and human Rac1, but not to human Cdc42. DGAP1 preferentially interacted with the activated GTP-bound forms of Rac1 and Rac1A, but did not affect the GTPase activities. Since Rho-type GTPases are implicated in the formation of specific F-actin structures and in the control of cell morphology, the microfilament system of mutants that either lack or overexpress DGAP1 has been analysed. DGAP1-null mutants showed elevated levels of F-actin that was organised in large leading edges, membrane ruffles or numerous large filopods. Expression of actin fused to green fluorescent protein (GFP) was used to monitor the actin dynamics in these cells, and revealed that the F-actin cytoskeleton of DGAP1-null cells was rapidly re-arranged to form ruffles and filopods. Conversely, in DGAP1-overexpressing cells, the formation of cellular projections containing F-actin was largely suppressed. Measurement of cell migration demonstrated that DGAP1 expression is inversely correlated with the speed of cell motility.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: