2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

Production of isoform-specific knockdown/knockout Madin-Darby canine kidney epithelial cells using CRISPR/Cas9.

  • James M Readler‎ et al.
  • MethodsX‎
  • 2020‎

CRISPR-Cas9 gene editing has made it possible to specifically edit genes in a myriad of target cells. Here, a method for isoform-specific editing and clonal selection in Madin-Darby canine kidney (MDCK) epithelial cells is described in detail. This approach was used to address a long-standing question in virology of how adenovirus enters polarized epithelia from the apical surface. Our method relies on selecting two sgRNA sequences, cloning them into a suitable fluorescently labeled Cas9 vector system, and subsequently transfecting our MDCK epithelium and selecting isoform-specific Coxsackievirus and adenovirus receptor knockout clones. Utilization of this method is readily applicable to many other genetic targets in epithelial cells.•Simultaneous utilization of an sgRNA upstream and an sgRNA downstream of a target sequence allows for deletion of the intervening sequence, including whole exons.•Sorting of cells positive for fluorescent marker gene expression enhances the identification of partial and biallelic gene knockout.•PCR screening allows relatively fast and efficient determination of isoform-specific deletion.


Infectious Norovirus Is Chronically Shed by Immunocompromised Pediatric Hosts.

  • Amy Davis‎ et al.
  • Viruses‎
  • 2020‎

Noroviruses are a leading cause of gastroenteritis worldwide. Although infections in healthy individuals are self-resolving, immunocompromised individuals are at risk for chronic disease and severe complications. Chronic norovirus infections in immunocompromised hosts are often characterized by long-term virus shedding, but it is unclear whether this shed virus remains infectious. We investigated the prevalence, genetic heterogeneity, and temporal aspects of norovirus infections in 1140 patients treated during a 6-year period at a pediatric research hospital. Additionally, we identified 20 patients with chronic infections lasting 37 to >418 days. Using a new human norovirus in vitro assay, we confirmed the continuous shedding of infectious virus for the first time. Shedding lasted longer in male patients and those with diarrheal symptoms. Prolonged shedding of infectious norovirus in immunocompromised hosts can potentially increase the likelihood of transmission, highlighting the importance of isolation precautions to prevent nosocomial infections.


Human Norovirus Triggers Primary B Cell Immune Activation In Vitro.

  • Carmen Mirabelli‎ et al.
  • mBio‎
  • 2022‎

Human norovirus (HNoV) is a global health and socioeconomic burden, estimated to infect every individual at least five times during their lifetime. The underlying mechanism for the potential lack of long-term immune protection from HNoV infections is not understood and prompted us to investigate HNoV susceptibility of primary human B cells and its functional impact. Primary B cells isolated from whole blood were infected with HNoV-positive stool samples and harvested at 3 days postinfection (dpi) to assess the viral RNA yield by reverse transcriptase quantitative PCR (RT-qPCR). A 3- to 18-fold increase in the HNoV RNA yield was observed in 50 to 60% of donors. Infection was further confirmed in B cells derived from splenic and lymph node biopsy specimens. Next, we characterized infection of whole-blood-derived B cells by flow cytometry in specific functional B cell subsets (naive CD27- IgD+, memory-switched CD27+ IgD-, memory-unswitched CD27+ IgD+, and double-negative CD27- IgD- cells). While the susceptibilities of the subsets were similar, changes in the B cell subset distribution upon infection were observed, which were also noted after treatment with HNoV virus-like particles and the predicted recombinant NS1 protein. Importantly, primary B cell stimulation with the predicted recombinant NS1 protein triggered B cell activation and induced metabolic changes. These data demonstrate that primary B cells are susceptible to HNoV infection and suggest that the NS1 protein can alter B cell activation and metabolism in vitro, which could have implications for viral pathogenesis and immune responses in vivo. IMPORTANCE Human norovirus (HNoV) is the most prevalent causative agent of gastroenteritis worldwide. Infection results in a self-limiting disease that can become chronic and severe in the immunocompromised, the elderly, and infants. There are currently no approved therapeutic and preventative strategies to limit the health and socioeconomic burdens associated with HNoV infections. Moreover, HNoV does not elicit lifelong immunity as repeat infections are common, presenting a challenge for vaccine development. Given the importance of B cells for humoral immunity, we investigated the susceptibility and impact of HNoV infection on human B cells. We found that HNoV replicates in human primary B cells derived from blood, spleen, and lymph node specimens, while the nonstructural protein NS1 can activate B cells. Because of the secreted nature of NS1, we put forward the hypothesis that HNoV infection can modulate bystander B cell function with potential impacts on systemic immune responses.


Sidestream smoke exposure increases the susceptibility of airway epithelia to adenoviral infection.

  • Priyanka Sharma‎ et al.
  • PloS one‎
  • 2012‎

Although significant epidemiological evidence indicates that cigarette smoke exposure increases the incidence and severity of viral infection, the molecular mechanisms behind the increased susceptibility of the respiratory tract to viral pathogens are unclear. Adenoviruses are non-enveloped DNA viruses and important causative agents of acute respiratory disease. The Coxsackievirus and adenovirus receptor (CAR) is the primary receptor for many adenoviruses. We hypothesized that cigarette smoke exposure increases epithelial susceptibility to adenovirus infection by increasing the abundance of apical CAR.


Murine norovirus (MNV-1) exposure in vitro to the purine nucleoside analog Ribavirin increases quasispecies diversity.

  • Timothy R Julian‎ et al.
  • Virus research‎
  • 2016‎

Ribavirin is a pharmaceutical antiviral used for the treatment of RNA virus infections including norovirus, hepatitis C virus, hepatitis E virus, Lassa virus, respiratory syncytial virus, and rhinovirus. Despite the drug's history and documented efficacy, the antiviral mechanism of Ribavirin remains unclear. Mechanisms proposed include depletion of the intracellular GTP pool, immunomodulatory effects, induction of error catastrophe, inhibition of viral polymerase activity, and/or inhibition of viral capping. In the present study, we leveraged deep sequencing data to demonstrate that Ribavirin increases murine norovirus (MNV-1) viral diversity. By serial passaging MNV-1 in RAW 264.7 cells for twenty generations in the presence of Ribavirin, we demonstrated statistically significant increases in both the number of unique haplotypes and the average pairwise difference (APD). Based on statistically significant differences in the probability of nucleotide mutations based on Roche 454 sequencing, we also demonstrated that single nucleotide substitutions are increased in the presence of Ribavirin. Finally, we demonstrated Ribavirin's impact on statistically significantly reducing the relative proportion of the dominant sequence within the quasispecies.


Astrovirus replication in human intestinal enteroids reveals multi-cellular tropism and an intricate host innate immune landscape.

  • Abimbola O Kolawole‎ et al.
  • PLoS pathogens‎
  • 2019‎

Human astroviruses (HAstV) are understudied positive-strand RNA viruses that cause gastroenteritis mostly in children and the elderly. Three clades of astroviruses, classic, MLB-type and VA-type have been reported in humans. One limitation towards a better understanding of these viruses has been the lack of a physiologically relevant cell culture model that supports growth of all clades of HAstV. Herein, we demonstrate infection of HAstV strains belonging to all three clades in epithelium-only human intestinal enteroids (HIE) isolated from biopsy-derived intestinal crypts. A detailed investigation of infection of VA1, a member of the non-canonical HAstV-VA/HMO clade, showed robust replication in HIE derived from different patients and from different intestinal regions independent of the cellular differentiation status. Flow cytometry and immunofluorescence analysis revealed that VA1 infects several cell types, including intestinal progenitor cells and mature enterocytes, in HIE cultures. RNA profiling of VA1-infected HIE uncovered that the host response to infection is dominated by interferon (IFN)-mediated innate immune responses. A comparison of the antiviral host response in non-transformed HIE and transformed human colon carcinoma Caco-2 cells highlighted significant differences between these cells, including an increased magnitude of the response in HIE. Additional studies confirmed the sensitivity of VA1 to exogenous IFNs, and indicated that the endogenous IFN response of HIE to curtail the growth of strains from all three clades. Genotypic variation in the permissiveness of different HIE lines to HAstV could be overcome by pharmacologic inhibition of JAK/STAT signaling. Collectively, our data identify HIE as a universal infection model for HAstV and an improved model of the intestinal epithelium to investigate enteric virus-host interactions.


Transiently antigen primed B cells can generate multiple subsets of memory cells.

  • Jackson S Turner‎ et al.
  • PloS one‎
  • 2017‎

Memory B cells are long-lived cells that generate a more vigorous response upon recognition of antigen (Ag) and T cell help than naïve B cells and ensure maintenance of durable humoral immunity. Functionally distinct subsets of murine memory B cells have been identified based on isotype switching of BCRs and surface expression of the co-stimulatory molecule CD80 and co-inhibitory molecule PD-L2. Memory B cells in a subpopulation with low surface expression of CD80 and PD-L2 are predominantly non-isotype switched and can be efficiently recruited into germinal centers (GCs) in secondary responses. In contrast, a CD80 and PD-L2 positive subset arises predominantly from GCs and can quickly differentiate into antibody-secreting plasma cells (PCs). Here we demonstrate that single transient acquisition of Ag by B cells may be sufficient for their long-term participation in GC responses and for development of various memory B cell subsets including CD80 and PD-L2 positive effector-like memory cells that rapidly differentiate into class-switched PCs during recall responses.


Adenovirus Co-Opts Neutrophilic Inflammation to Enhance Transduction of Epithelial Cells.

  • James M Readler‎ et al.
  • Viruses‎
  • 2021‎

Human adenoviruses (HAdV) cause a variety of infections in human hosts, from self-limited upper respiratory tract infections in otherwise healthy people to fulminant pneumonia and death in immunocompromised patients. Many HAdV enter polarized epithelial cells by using the primary receptor, the Coxsackievirus and adenovirus receptor (CAR). Recently published data demonstrate that a potent neutrophil (PMN) chemoattractant, interleukin-8 (IL-8), stimulates airway epithelial cells to increase expression of the apical isoform of CAR (CAREx8), which results in increased epithelial HAdV type 5 (HAdV5) infection. However, the mechanism for PMN-enhanced epithelial HAdV5 transduction remains unclear. In this manuscript, the molecular mechanisms behind PMN mediated enhancement of epithelial HAdV5 transduction are characterized using an MDCK cell line that stably expresses human CAREx8 under a doxycycline inducible promoter (MDCK-CAREx8 cells). Contrary to our hypothesis, PMN exposure does not enhance HAdV5 entry by increasing CAREx8 expression nor through activation of non-specific epithelial endocytic pathways. Instead, PMN serine proteases are responsible for PMN-mediated enhancement of HAdV5 transduction in MDCK-CAREx8 cells. This is evidenced by reduced transduction upon inhibition of PMN serine proteases and increased transduction upon exposure to exogenous human neutrophil elastase (HNE). Furthermore, HNE exposure activates epithelial autophagic flux, which, even when triggered through other mechanisms, results in a similar enhancement of epithelial HAdV5 transduction. Inhibition of F-actin with cytochalasin D partially attenuates PMN mediated enhancement of HAdV transduction. Taken together, these findings suggest that HAdV5 can leverage innate immune responses to establish infections.


Mass spectrometric profiling of HLA-B44 peptidomes provides evidence for tapasin-mediated tryptophan editing.

  • Amanpreet Kaur‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Activation of CD8 + T cells against pathogens and cancers involves the recognition of antigenic peptides bound to human leukocyte antigen (HLA) class-I proteins. Peptide binding to HLA class I proteins is coordinated by a multi-protein complex called the peptide loading complex (PLC). Tapasin, a key PLC component, facilitates the binding and optimization of HLA class I peptides. However, different HLA class I allotypes have variable requirements for tapasin for their assembly and surface expression. HLA-B*44:02 and HLA-B*44:05, which differ only at residue 116 of their heavy chain sequences, fall at opposite ends of the tapasin-dependency spectrum. HLA-B*44:02 (D116) is highly tapasin-dependent, whereas HLA-B*44:05 (Y116) is highly tapasinindependent. Mass spectrometric comparisons of HLA-B*4405 and HLA-B*44:02 peptidomes were undertaken to better understand the influences of tapasin upon HLA-B44 peptidome compositions. Analyses of the HLA-B*44:05 peptidomes in the presence and absence of tapasin reveal that peptides with the C-terminal tryptophan residues and those with higher predicted binding affinities are selected in the presence of tapasin. Additionally, when tapasin is present, C-terminal tryptophans are also more highly represented among peptides unique to B*44:02 and those shared between B*44:02 and B*44:05, compared with peptides unique to B*44:05. Overall, our findings demonstrate that tapasin influences the C-terminal composition of HLA class I-bound peptides and favors the binding of higher affinity peptides. For the HLA-B44 family, the presence of tapasin or high tapasin-dependence of an allotype results in better binding of peptides with C-terminal tryptophans, consistent with a role for tapasin in stabilizing an open conformation to accommodate bulky C-terminal residues.


Norovirus Escape from Broadly Neutralizing Antibodies Is Limited to Allostery-Like Mechanisms.

  • Abimbola O Kolawole‎ et al.
  • mSphere‎
  • 2017‎

Ideal antiviral vaccines elicit antibodies (Abs) with broad strain recognition that bind to regions that are difficult to mutate for escape. Using 10 murine norovirus (MNV) strains and 5 human norovirus (HuNoV) virus-like particles (VLPs), we identified monoclonal antibody (MAb) 2D3, which broadly neutralized all MNV strains tested. Importantly, escape mutants corresponding to this antibody were very slow to develop and were distal to those raised against our previously studied antibody, A6.2. To understand the atomic details of 2D3 neutralization, we determined the cryo-electron microscopy (cryo-EM) structure of the 2D3/MNV1 complex. Interestingly, 2D3 binds to the top of the P domain, very close to where A6.2 binds, but the only escape mutations identified to date fall well outside the contact regions of both 2D3 and A6.2. To determine how mutations in distal residues could block antibody binding, we used molecular dynamics flexible fitting simulations of the atomic structures placed into the density map to examine the 2D3/MNV1 complex and these mutations. Our findings suggest that the escape mutant, V339I, may stabilize a salt bridge network at the P-domain dimer interface that, in an allostery-like manner, affects the conformational relaxation of the P domain and the efficiency of binding. They further highlight the unusual antigenic surface bound by MAb 2D3, one which elicits cross-reactive antibodies but which the virus is unable to alter to escape neutralization. These results may be leveraged to generate norovirus (NoV) vaccines containing broadly neutralizing antibodies. IMPORTANCE The simplest and most common way for viruses to escape antibody neutralization is by mutating residues that are essential for antibody binding. Escape mutations are strongly selected for by their effect on viral fitness, which is most often related to issues of protein folding, particle assembly, and capsid function. The studies presented here demonstrated that a broadly neutralizing antibody to mouse norovirus binds to an exposed surface but that the only escape mutants that arose were distal to the antibody binding surface. To understand this finding, we performed an in silico analysis that suggested that those escape mutations blocked antibody binding by affecting structural plasticity. This kind of antigenic region-one that gives rise to broadly neutralizing antibodies but that the virus finds difficult to escape from-is therefore ideal for vaccine development.


Adenovirus entry from the apical surface of polarized epithelia is facilitated by the host innate immune response.

  • Poornima L N Kotha‎ et al.
  • PLoS pathogens‎
  • 2015‎

Prevention of viral-induced respiratory disease begins with an understanding of the factors that increase or decrease susceptibility to viral infection. The primary receptor for most adenoviruses is the coxsackievirus and adenovirus receptor (CAR), a cell-cell adhesion protein normally localized at the basolateral surface of polarized epithelia and involved in neutrophil transepithelial migration. Recently, an alternate isoform of CAR, CAREx8, has been identified at the apical surface of polarized airway epithelia and is implicated in viral infection from the apical surface. We hypothesized that the endogenous role of CAREx8 may be to facilitate host innate immunity. We show that IL-8, a proinflammatory cytokine and a neutrophil chemoattractant, stimulates the protein expression and apical localization of CAREx8 via activation of AKT/S6K and inhibition of GSK3β. Apical CAREx8 tethers infiltrating neutrophils at the apical surface of a polarized epithelium. Moreover, neutrophils present on the apical-epithelial surface enhance adenovirus entry into the epithelium. These findings suggest that adenovirus evolved to co-opt an innate immune response pathway that stimulates the expression of its primary receptor, apical CAREx8, to allow the initial infection the intact epithelium. In addition, CAREx8 is a new target for the development of novel therapeutics for both respiratory inflammatory disease and adenoviral infection.


Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning.

  • Trung H M Pham‎ et al.
  • The Journal of experimental medicine‎
  • 2010‎

Lymphocyte egress from lymph nodes (LNs) is dependent on sphingosine-1-phosphate (S1P), but the cellular source of this S1P is not defined. We generated mice that expressed Cre from the lymphatic vessel endothelial hyaluronan receptor 1 (Lyve-1) locus and that showed efficient recombination of loxP-flanked genes in lymphatic endothelium. We report that mice with Lyve-1 CRE-mediated ablation of sphingosine kinase (Sphk) 1 and lacking Sphk2 have a loss of S1P in lymph while maintaining normal plasma S1P. In Lyve-1 Cre+ Sphk-deficient mice, lymphocyte egress from LNs and Peyer's patches is blocked. Treatment with pertussis toxin to overcome Galphai-mediated retention signals restores lymphocyte egress. Furthermore, in the absence of lymphatic Sphks, the initial lymphatic vessels in nonlymphoid tissues show an irregular morphology and a less organized vascular endothelial cadherin distribution at cell-cell junctions. Our data provide evidence that lymphatic endothelial cells are an in vivo source of S1P required for lymphocyte egress from LNs and Peyer's patches, and suggest a role for S1P in lymphatic vessel maturation.


Visualizing B cell capture of cognate antigen from follicular dendritic cells.

  • Kazuhiro Suzuki‎ et al.
  • The Journal of experimental medicine‎
  • 2009‎

The prominent display of opsonized antigen by follicular dendritic cells (FDCs) has long favored the view that they serve as antigen-presenting cells for B cells. Surprisingly, however, although B cell capture of antigen from macrophages and dendritic cells has been visualized, acquisition from FDCs has not been directly observed. Using two-photon microscopy, we visualized B cell capture of cognate antigen from FDCs. B cell CXCR5 expression was required, and encounter with FDC-associated antigen could be detected for >1 wk after immunization. B cell-FDC contact times were often brief but occasionally persisted for >30 min, and B cells sometimes acquired antigen together with FDC surface proteins. These observations establish that FDCs can serve as sites of B cell antigen capture, with their prolonged display time ensuring that even rare B cells have the chance of antigen encounter, and they suggest possible information transfer from antigen-presenting cell to B cell.


Macropinocytosis drives T cell growth by sustaining the activation of mTORC1.

  • John C Charpentier‎ et al.
  • Nature communications‎
  • 2020‎

Macropinocytosis is an evolutionarily-conserved, large-scale, fluid-phase form of endocytosis that has been ascribed different functions including antigen presentation in macrophages and dendritic cells, regulation of receptor density in neurons, and regulation of tumor growth under nutrient-limiting conditions. However, whether macropinocytosis regulates the expansion of non-transformed mammalian cells is unknown. Here we show that primary mouse and human T cells engage in macropinocytosis that increases in magnitude upon T cell activation to support T cell growth even under amino acid (AA) replete conditions. Mechanistically, macropinocytosis in T cells provides access of extracellular AA to an endolysosomal compartment to sustain activation of the mechanistic target of rapamycin complex 1 (mTORC1) that promotes T cell growth. Our results thus implicate a function of macropinocytosis in mammalian cell growth beyond Ras-transformed tumor cells via sustained mTORC1 activation.


CD300lf is the primary physiologic receptor of murine norovirus but not human norovirus.

  • Vincent R Graziano‎ et al.
  • PLoS pathogens‎
  • 2020‎

Murine norovirus (MNoV) is an important model of human norovirus (HNoV) and mucosal virus infection more broadly. Viral receptor utilization is a major determinant of cell tropism, host range, and pathogenesis. The bona fide receptor for HNoV is unknown. Recently, we identified CD300lf as a proteinaceous receptor for MNoV. Interestingly, its paralogue CD300ld was also sufficient for MNoV infection in vitro. Here we explored whether CD300lf is the sole physiologic receptor in vivo and whether HNoV can use a CD300 ortholog as an entry receptor. We report that both CD300ld and CD300lf are sufficient for infection by diverse MNoV strains in vitro. We further demonstrate that CD300lf is essential for both oral and parenteral MNoV infection and to elicit anti-MNoV humoral responses in vivo. In mice deficient in STAT1 signaling, CD300lf is required for MNoV-induced lethality. Finally, we demonstrate that human CD300lf (huCD300lf) is not essential for HNoV infection, nor does huCD300lf inhibit binding of HNoV virus-like particles to glycans. Thus, we report huCD300lf is not a receptor for HNoV.


Glycolysis Is an Intrinsic Factor for Optimal Replication of a Norovirus.

  • Karla D Passalacqua‎ et al.
  • mBio‎
  • 2019‎

The metabolic pathways of central carbon metabolism, glycolysis and oxidative phosphorylation (OXPHOS), are important host factors that determine the outcome of viral infections and can be manipulated by some viruses to favor infection. However, mechanisms of metabolic modulation and their effects on viral replication vary widely. Herein, we present the first metabolomics and energetic profiling of norovirus-infected cells, which revealed increases in glycolysis, OXPHOS, and the pentose phosphate pathway (PPP) during murine norovirus (MNV) infection. Inhibiting glycolysis with 2-deoxyglucose (2DG) in macrophages revealed that glycolysis is an important factor for optimal MNV infection, while inhibiting the PPP and OXPHOS showed a relatively minor impact of these pathways on MNV infection. 2DG affected an early stage in the viral life cycle after viral uptake and capsid uncoating, leading to decreased viral protein production and viral RNA. The requirement of glycolysis was specific for MNV (but not astrovirus) infection, independent of the type I interferon antiviral response, and unlikely to be due to a lack of host cell nucleotide synthesis. MNV infection increased activation of the protein kinase Akt, but not AMP-activated protein kinase (AMPK), two master regulators of cellular metabolism, implicating Akt signaling in upregulating host metabolism during norovirus infection. In conclusion, our findings suggest that the metabolic state of target cells is an intrinsic host factor that determines the extent of norovirus replication and implicates glycolysis as a virulence determinant. They further point to cellular metabolism as a novel therapeutic target for norovirus infections and improvements in current human norovirus culture systems.IMPORTANCE Viruses depend on the host cells they infect to provide the machinery and substrates for replication. Host cells are highly dynamic systems that can alter their intracellular environment and metabolic behavior, which may be helpful or inhibitory for an infecting virus. In this study, we show that macrophages, a target cell of murine norovirus (MNV), increase glycolysis upon viral infection, which is important for early steps in MNV infection. Human noroviruses (hNoV) are a major cause of gastroenteritis globally, causing enormous morbidity and economic burden. Currently, no effective antivirals or vaccines exist for hNoV, mainly due to the lack of high-efficiency in vitro culture models for their study. Thus, insights gained from the MNV model may reveal aspects of host cell metabolism that can be targeted for improving hNoV cell culture systems and for developing effective antiviral therapies.


Coxsackievirus and adenovirus receptor (CAR) mediates trafficking of acid sensing ion channel 3 (ASIC3) via PSD-95.

  • Katherine J D A Excoffon‎ et al.
  • Biochemical and biophysical research communications‎
  • 2012‎

We have previously shown that the Coxsackievirus and adenovirus receptor (CAR) can interact with post-synaptic density 95 (PSD-95) and localize PSD-95 to cell-cell junctions. We have also shown that activity of the acid sensing ion channel (ASIC3), a H(+)-gated cation channel that plays a role in mechanosensation and pain signaling, is negatively modulated by PSD-95 through a PDZ-based interaction. We asked whether CAR and ASIC3 simultaneously interact with PSD-95, and if so, whether co-expression of these proteins alters their cellular distribution and localization. Results indicate that CAR and ASIC3 co-immunoprecipitate only when co-expressed with PSD-95. CAR also brings both PSD-95 and ASIC3 to the junctions of heterologous cells. Moreover, CAR rescues PSD-95-mediated inhibition of ASIC3 currents. These data suggest that, in addition to activity as a viral receptor and adhesion molecule, CAR can play a role in trafficking proteins, including ion channels, in a PDZ-based scaffolding complex.


Transiently antigen-primed B cells return to naive-like state in absence of T-cell help.

  • Jackson S Turner‎ et al.
  • Nature communications‎
  • 2017‎

The perspective that naive B-cell recognition of antigen in the absence of T-cell help causes cell death or anergy is supported by in vivo studies of B cells that are continuously exposed to self-antigens. However, intravital imaging suggests that early B-cell recognition of large foreign antigens may be transient. Whether B cells are tolerized or can be recruited into humoural immune responses following such encounters is not clear. Here we show that in the presence of T-cell help, single transient antigen acquisition is sufficient to recruit B cells into the germinal centre and induce memory and plasma cell responses. In the absence of T-cell help, transiently antigen-primed B cells do not undergo apoptosis in vivo; they return to quiescence and are recruited efficiently into humoural responses upon reacquisition of antigen and T-cell help.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: