Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 32 papers

Complementary action of granulocyte macrophage colony-stimulating factor and interleukin-17A induces interleukin-23, receptor activator of nuclear factor-κB ligand, and matrix metalloproteinases and drives bone and cartilage pathology in experimental arthritis: rationale for combination therapy in rheumatoid arthritis.

  • Annemarie E M van Nieuwenhuijze‎ et al.
  • Arthritis research & therapy‎
  • 2015‎

Type 17 T helper cells and interleukin (IL)-17 play important roles in the pathogenesis of human and murine arthritis. Although there is a clear link between IL-17 and granulocyte macrophage colony-stimulating factor (GM-CSF) in the inflammatory cascade, details about their interaction in arthritic synovial joints are unclear. In view of the introduction of GM-CSF and IL-17 inhibitors to the clinic, we studied how IL-17 and GM-CSF orchestrate the local production of inflammatory mediators during experimental arthritis.


In vivo multi-modal imaging of experimental autoimmune uveoretinitis in transgenic reporter mice reveals the dynamic nature of inflammatory changes during disease progression.

  • Xiangting Chen‎ et al.
  • Journal of neuroinflammation‎
  • 2015‎

Experimental autoimmune uveoretinitis (EAU) is a widely used experimental animal model of human endogenous posterior uveoretinitis. In the present study, we performed in vivo imaging of the retina in transgenic reporter mice to investigate dynamic changes in exogenous inflammatory cells and endogenous immune cells during the disease process.


Targeting triple-negative breast cancers with the Smac-mimetic birinapant.

  • Najoua Lalaoui‎ et al.
  • Cell death and differentiation‎
  • 2020‎

Smac mimetics target inhibitor of apoptosis (IAP) proteins, thereby suppressing their function to facilitate tumor cell death. Here we have evaluated the efficacy of the preclinical Smac-mimetic compound A and the clinical lead birinapant on breast cancer cells. Both exhibited potent in vitro activity in triple-negative breast cancer (TNBC) cells, including those from patient-derived xenograft (PDX) models. Birinapant was further studied using in vivo PDX models of TNBC and estrogen receptor-positive (ER+) breast cancer. Birinapant exhibited single agent activity in all TNBC PDX models and augmented response to docetaxel, the latter through induction of TNF. Transcriptomic analysis of TCGA datasets revealed that genes encoding mediators of Smac-mimetic-induced cell death were expressed at higher levels in TNBC compared with ER+ breast cancer, resulting in a molecular signature associated with responsiveness to Smac mimetics. In addition, the cell death complex was preferentially formed in TNBCs versus ER+ cells in response to Smac mimetics. Taken together, our findings provide a rationale for prospectively selecting patients whose breast tumors contain a competent death receptor signaling pathway for the further evaluation of birinapant in the clinic.


Enrichment of extracellular vesicles from human synovial fluid using size exclusion chromatography.

  • Andrew D Foers‎ et al.
  • Journal of extracellular vesicles‎
  • 2018‎

As a complex biological fluid, human synovial fluid (SF) presents challenges for extracellular vesicle (EV) enrichment using standard methods. In this study of human SF, a size exclusion chromatography (SEC)-based method of EV enrichment is shown to deplete contaminants that remain after standard ultracentrifugation-based enrichment methods. Specifically, considerable levels of serum albumin, the high-density lipoprotein marker, apolipoprotein A-I, fibronectin and other extracellular proteins and debris are present in EVs prepared by differential ultracentrifugation. While the addition of a sucrose density gradient purification step improved purification quality, some contamination remained. In contrast, using a SEC-based approach, SF EVs were efficiently separated from serum albumin, apolipoprotein A-I and additional contaminating proteins that co-purified with high-speed centrifugation. Finally, using high-resolution mass spectrometry analysis, we found that residual contaminants which remain after SEC, such as fibronectin and other extracellular proteins, can be successfully depleted by proteinase K. Taken together, our results highlight the limitations of ultracentrifugation-based methods of EV isolation from complex biological fluids and suggest that SEC can be used to obtain higher purity EV samples. In this way, SEC-based methods are likely to be useful for identifying EV-enriched components and improving understanding of EV function in disease.


Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma.

  • Nicolas Jacquelot‎ et al.
  • Nature immunology‎
  • 2021‎

Group 2 innate lymphoid cells (ILC2s) are essential to maintain tissue homeostasis. In cancer, ILC2s can harbor both pro-tumorigenic and anti-tumorigenic functions, but we know little about their underlying mechanisms or whether they could be clinically relevant or targeted to improve patient outcomes. Here, we found that high ILC2 infiltration in human melanoma was associated with a good clinical prognosis. ILC2s are critical producers of the cytokine granulocyte-macrophage colony-stimulating factor, which coordinates the recruitment and activation of eosinophils to enhance antitumor responses. Tumor-infiltrating ILC2s expressed programmed cell death protein-1, which limited their intratumoral accumulation, proliferation and antitumor effector functions. This inhibition could be overcome in vivo by combining interleukin-33-driven ILC2 activation with programmed cell death protein-1 blockade to significantly increase antitumor responses. Together, our results identified ILC2s as a critical immune cell type involved in melanoma immunity and revealed a potential synergistic approach to harness ILC2 function for antitumor immunotherapies.


Hydroxychloroquine inhibits the mitochondrial antioxidant system in activated T cells.

  • Man Lyang Kim‎ et al.
  • iScience‎
  • 2021‎

Although hydroxychloroquine (HCQ) has long been used to treat autoimmune diseases, its mechanism of action remains poorly understood. In CD4 T-cells, we found that a clinically relevant concentration of HCQ inhibited the mitochondrial antioxidant system triggered by TCR crosslinking, leading to increased mitochondrial superoxide, impaired activation-induced autophagic flux, and reduced proliferation of CD4 T-cells. In antigen-presenting cells, HCQ also reduced constitutive activation of the endo-lysosomal protease legumain and toll-like receptor 9, thereby reducing cytokine production, but it had little apparent impact on constitutive antigen processing and peptide presentation. HCQ's effects did not require endo-lysosomal pH change, nor impaired autophagosome-lysosome fusion. We explored the clinical relevance of these findings in patients with celiac disease-a prototypic CD4 T-cell-mediated disease-and found that HCQ limits ex vivo antigen-specific T cell responses. We report a T-cell-intrinsic immunomodulatory effect from HCQ and suggest potential re-purposing of HCQ for celiac disease.


Transgenic expression of GM-CSF in T cells causes disseminated histiocytosis.

  • Annemarie E van Nieuwenhuijze‎ et al.
  • The American journal of pathology‎
  • 2014‎

Recent studies highlight surprising roles for granulocyte-macrophage colony-stimulating factor (GM-CSF) production by T cells. T-cell-derived GM-CSF is required for the differentiation of monocyte-derived inflammatory dendritic cells during inflammation and for the pathogenicity of IL-17 producing T helper cells in autoimmunity. To gain further insight into these findings, we engineered in vivo overexpression of GM-CSF specifically in T cells, under the control of the Lck promoter. Lck-GM-CSF transgenic mice displayed a dramatic phenotype, characterized by splenomegaly, lymphadenopathy, thymic atrophy, and multiple abnormalities in blood cell populations. Thymocyte differentiation was severely affected, and there was a dramatic increase in regulatory T cells in the thymus and peripheral lymphoid organs. Lck-GM-CSF transgenic mice developed a disseminated histiocytosis and had increased circulating IL-17 producing T helper cells-related cytokines. The pathological characteristics in Lck-GM-CSF transgenic mice resemble those of histiocytic human diseases, such as Langerhans cell histiocytosis. The etiology of many histiocytic disorders is unknown, but our findings suggest that over-production of GM-CSF by T cells could be a pathogenic factor and raise the possibility that GM-CSF may represent a novel therapeutic target.


TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice.

  • James A Rickard‎ et al.
  • eLife‎
  • 2014‎

SHARPIN regulates immune signaling and contributes to full transcriptional activity and prevention of cell death in response to TNF in vitro. The inactivating mouse Sharpin cpdm mutation causes TNF-dependent multi-organ inflammation, characterized by dermatitis, liver inflammation, splenomegaly, and loss of Peyer's patches. TNF-dependent cell death has been proposed to cause the inflammatory phenotype and consistent with this we show Tnfr1, but not Tnfr2, deficiency suppresses the phenotype (and it does so more efficiently than Il1r1 loss). TNFR1-induced apoptosis can proceed through caspase-8 and BID, but reduction in or loss of these players generally did not suppress inflammation, although Casp8 heterozygosity significantly delayed dermatitis. Ripk3 or Mlkl deficiency partially ameliorated the multi-organ phenotype, and combined Ripk3 deletion and Casp8 heterozygosity almost completely suppressed it, even restoring Peyer's patches. Unexpectedly, Sharpin, Ripk3 and Casp8 triple deficiency caused perinatal lethality. These results provide unexpected insights into the developmental importance of SHARPIN.


RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL.

  • Kate E Lawlor‎ et al.
  • Nature communications‎
  • 2015‎

RIPK3 and its substrate MLKL are essential for necroptosis, a lytic cell death proposed to cause inflammation via the release of intracellular molecules. Whether and how RIPK3 might drive inflammation in a manner independent of MLKL and cell lysis remains unclear. Here we show that following LPS treatment, or LPS-induced necroptosis, the TLR adaptor protein TRIF and inhibitor of apoptosis proteins (IAPs: X-linked IAP, cellular IAP1 and IAP2) regulate RIPK3 and MLKL ubiquitylation. Hence, when IAPs are absent, LPS triggers RIPK3 to activate caspase-8, promoting apoptosis and NLRP3-caspase-1 activation, independent of RIPK3 kinase activity and MLKL. In contrast, in the absence of both IAPs and caspase-8, RIPK3 kinase activity and MLKL are essential for TLR-induced NLRP3 activation. Consistent with in vitro experiments, interleukin-1 (IL-1)-dependent autoantibody-mediated arthritis is exacerbated in mice lacking IAPs, and is reduced by deletion of RIPK3, but not MLKL. Therefore RIPK3 can promote NLRP3 inflammasome and IL-1β inflammatory responses independent of MLKL and necroptotic cell death.


XIAP Loss Triggers RIPK3- and Caspase-8-Driven IL-1β Activation and Cell Death as a Consequence of TLR-MyD88-Induced cIAP1-TRAF2 Degradation.

  • Kate E Lawlor‎ et al.
  • Cell reports‎
  • 2017‎

X-linked Inhibitor of Apoptosis (XIAP) deficiency predisposes people to pathogen-associated hyperinflammation. Upon XIAP loss, Toll-like receptor (TLR) ligation triggers RIPK3-caspase-8-mediated IL-1β activation and death in myeloid cells. How XIAP suppresses these events remains unclear. Here, we show that TLR-MyD88 causes the proteasomal degradation of the related IAP, cIAP1, and its adaptor, TRAF2, by inducing TNF and TNF Receptor 2 (TNFR2) signaling. Genetically, we define that myeloid-specific cIAP1 loss promotes TLR-induced RIPK3-caspase-8 and IL-1β activity in the absence of XIAP. Importantly, deletion of TNFR2 in XIAP-deficient cells limited TLR-MyD88-induced cIAP1-TRAF2 degradation, cell death, and IL-1β activation. In contrast to TLR-MyD88, TLR-TRIF-induced interferon (IFN)β inhibited cIAP1 loss and consequent cell death. These data reveal how, upon XIAP deficiency, a TLR-TNF-TNFR2 axis drives cIAP1-TRAF2 degradation to allow TLR or TNFR1 activation of RIPK3-caspase-8 and IL-1β. This mechanism may explain why XIAP-deficient patients can exhibit symptoms reminiscent of patients with activating inflammasome mutations.


Autoinflammatory mutation in NLRC4 reveals a leucine-rich repeat (LRR)-LRR oligomerization interface.

  • Fiona Moghaddas‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2018‎

Monogenic autoinflammatory disorders are characterized by dysregulation of the innate immune system, for example by gain-of-function mutations in inflammasome-forming proteins, such as NOD-like receptor family CARD-containing 4 protein (NLRC4).


NK cell-derived GM-CSF potentiates inflammatory arthritis and is negatively regulated by CIS.

  • Cynthia Louis‎ et al.
  • The Journal of experimental medicine‎
  • 2020‎

Despite increasing recognition of the importance of GM-CSF in autoimmune disease, it remains unclear how GM-CSF is regulated at sites of tissue inflammation. Using GM-CSF fate reporter mice, we show that synovial NK cells produce GM-CSF in autoantibody-mediated inflammatory arthritis. Synovial NK cells promote a neutrophilic inflammatory cell infiltrate, and persistent arthritis, via GM-CSF production, as deletion of NK cells, or specific ablation of GM-CSF production in NK cells, abrogated disease. Synovial NK cell production of GM-CSF is IL-18-dependent. Furthermore, we show that cytokine-inducible SH2-containing protein (CIS) is crucial in limiting GM-CSF signaling not only during inflammatory arthritis but also in experimental allergic encephalomyelitis (EAE), a murine model of multiple sclerosis. Thus, a cellular cascade of synovial macrophages, NK cells, and neutrophils mediates persistent joint inflammation via production of IL-18 and GM-CSF. Endogenous CIS provides a key brake on signaling through the GM-CSF receptor. These findings shed new light on GM-CSF biology in sterile tissue inflammation and identify several potential therapeutic targets.


Proteomic analysis of extracellular vesicles reveals an immunogenic cargo in rheumatoid arthritis synovial fluid.

  • Andrew D Foers‎ et al.
  • Clinical & translational immunology‎
  • 2020‎

Extracellular vesicles (EVs) from rheumatoid arthritis (RA) synovial fluid (SF) have been reported to stimulate the release of pro-inflammatory mediators from recipient cells. We recently developed a size exclusion chromatography (SEC)-based method for EV isolation capable of high-quality enrichments from human SF. Here, we employed this method to accurately characterise the SF EV proteome and investigate potential contributions to inflammatory pathways in RA.


G-CSF drives autoinflammation in APLAID.

  • Elisabeth Mulazzani‎ et al.
  • Nature immunology‎
  • 2023‎

Missense mutations in PLCG2 can cause autoinflammation with phospholipase C gamma 2-associated antibody deficiency and immune dysregulation (APLAID). Here, we generated a mouse model carrying an APLAID mutation (p.Ser707Tyr) and found that inflammatory infiltrates in the skin and lungs were only partially ameliorated by removing inflammasome function via the deletion of caspase-1. Also, deleting interleukin-6 or tumor necrosis factor did not fully prevent APLAID mutant mice from autoinflammation. Overall, these findings are in accordance with the poor response individuals with APLAID have to treatments that block interleukin-1, JAK1/2 or tumor necrosis factor. Cytokine analysis revealed increased granulocyte colony-stimulating factor (G-CSF) levels as the most distinct feature in mice and individuals with APLAID. Remarkably, treatment with a G-CSF antibody completely reversed established disease in APLAID mice. Furthermore, excessive myelopoiesis was normalized and lymphocyte numbers rebounded. APLAID mice were also fully rescued by bone marrow transplantation from healthy donors, associated with reduced G-CSF production, predominantly from non-hematopoietic cells. In summary, we identify APLAID as a G-CSF-driven autoinflammatory disease, for which targeted therapy is feasible.


Trabid patient mutations impede the axonal trafficking of adenomatous polyposis coli to disrupt neurite growth.

  • Daniel Frank‎ et al.
  • eLife‎
  • 2023‎

ZRANB1 (human Trabid) missense mutations have been identified in children diagnosed with a range of congenital disorders including reduced brain size, but how Trabid regulates neurodevelopment is not understood. We have characterized these patient mutations in cells and mice to identify a key role for Trabid in the regulation of neurite growth. One of the patient mutations flanked the catalytic cysteine of Trabid and its deubiquitylating (DUB) activity was abrogated. The second variant retained DUB activity, but failed to bind STRIPAK, a large multiprotein assembly implicated in cytoskeleton organization and neural development. Zranb1 knock-in mice harboring either of these patient mutations exhibited reduced neuronal and glial cell densities in the brain and a motor deficit consistent with fewer dopaminergic neurons and projections. Mechanistically, both DUB-impaired and STRIPAK-binding-deficient Trabid variants impeded the trafficking of adenomatous polyposis coli (APC) to microtubule plus-ends. Consequently, the formation of neuronal growth cones and the trajectory of neurite outgrowth from mutant midbrain progenitors were severely compromised. We propose that STRIPAK recruits Trabid to deubiquitylate APC, and that in cells with mutant Trabid, APC becomes hyperubiquitylated and mislocalized causing impaired organization of the cytoskeleton that underlie the neuronal and developmental phenotypes.


The Mitochondrial Apoptotic Effectors BAX/BAK Activate Caspase-3 and -7 to Trigger NLRP3 Inflammasome and Caspase-8 Driven IL-1β Activation.

  • James E Vince‎ et al.
  • Cell reports‎
  • 2018‎

Intrinsic apoptosis resulting from BAX/BAK-mediated mitochondrial membrane damage is regarded as immunologically silent. We show here that in macrophages, BAX/BAK activation results in inhibitor of apoptosis (IAP) protein degradation to promote caspase-8-mediated activation of IL-1β. Furthermore, BAX/BAK signaling induces a parallel pathway to NLRP3 inflammasome-mediated caspase-1-dependent IL-1β maturation that requires potassium efflux. Remarkably, following BAX/BAK activation, the apoptotic executioner caspases, caspase-3 and -7, act upstream of both caspase-8 and NLRP3-induced IL-1β maturation and secretion. Conversely, the pyroptotic cell death effectors gasdermin D and gasdermin E are not essential for BAX/BAK-induced IL-1β release. These findings highlight that innate immune cells undergoing BAX/BAK-mediated apoptosis have the capacity to generate pro-inflammatory signals and provide an explanation as to why IL-1β activation is often associated with cellular stress, such as during chemotherapy.


TRAF2 regulates TNF and NF-κB signalling to suppress apoptosis and skin inflammation independently of Sphingosine kinase 1.

  • Nima Etemadi‎ et al.
  • eLife‎
  • 2015‎

TRAF2 is a component of TNF superfamily signalling complexes and plays an essential role in the regulation and homeostasis of immune cells. TRAF2 deficient mice die around birth, therefore its role in adult tissues is not well-explored. Furthermore, the role of the TRAF2 RING is controversial. It has been claimed that the atypical TRAF2 RING cannot function as a ubiquitin E3 ligase but counterclaimed that TRAF2 RING requires a co-factor, sphingosine-1-phosphate, that is generated by the enzyme sphingosine kinase 1, to function as an E3 ligase. Keratinocyte-specific deletion of Traf2, but not Sphk1 deficiency, disrupted TNF mediated NF-κB and MAP kinase signalling and caused epidermal hyperplasia and psoriatic skin inflammation. This inflammation was driven by TNF, cell death, non-canonical NF-κB and the adaptive immune system, and might therefore represent a clinically relevant model of psoriasis. TRAF2 therefore has essential tissue specific functions that do not overlap with those of Sphk1.


SIDT2 Transports Extracellular dsRNA into the Cytoplasm for Innate Immune Recognition.

  • Tan A Nguyen‎ et al.
  • Immunity‎
  • 2017‎

Double-stranded RNA (dsRNA) is a common by-product of viral infections and acts as a potent trigger of antiviral immunity. In the nematode C. elegans, sid-1 encodes a dsRNA transporter that is highly conserved throughout animal evolution, but the physiological role of SID-1 and its orthologs remains unclear. Here, we show that the mammalian SID-1 ortholog, SIDT2, is required to transport internalized extracellular dsRNA from endocytic compartments into the cytoplasm for immune activation. Sidt2-deficient mice exposed to extracellular dsRNA, encephalomyocarditis virus (EMCV), and herpes simplex virus 1 (HSV-1) show impaired production of antiviral cytokines and-in the case of EMCV and HSV-1-reduced survival. Thus, SIDT2 has retained the dsRNA transport activity of its C. elegans ortholog, and this transport is important for antiviral immunity.


MLKL deficiency protects against low-grade, sterile inflammation in aged mice.

  • Emma C Tovey Crutchfield‎ et al.
  • Cell death and differentiation‎
  • 2023‎

MLKL and RIPK3 are the core signaling proteins of the inflammatory cell death pathway, necroptosis, which is a known mediator and modifier of human disease. Necroptosis has been implicated in the progression of disease in almost every physiological system and recent reports suggest a role for necroptosis in aging. Here, we present the first comprehensive analysis of age-related histopathological and immunological phenotypes in a cohort of Mlkl-/- and Ripk3-/- mice on a congenic C57BL/6 J genetic background. We show that genetic deletion of Mlkl in female mice interrupts immune system aging, specifically delaying the age-related reduction of circulating lymphocytes. -Seventeen-month-old Mlkl-/- female mice were also protected against age-related chronic sterile inflammation in connective tissue and skeletal muscle relative to wild-type littermate controls, exhibiting a reduced number of immune cell infiltrates in these sites and fewer regenerating myocytes. These observations implicate MLKL in age-related sterile inflammation, suggesting a possible application for long-term anti-necroptotic therapy in humans.


Administration of an LXR agonist promotes atherosclerotic lesion remodelling in murine inflammatory arthritis.

  • Dragana Dragoljevic‎ et al.
  • Clinical & translational immunology‎
  • 2023‎

The leading cause of mortality in patients with rheumatoid arthritis is atherosclerotic cardiovascular disease (CVD). We have shown that murine arthritis impairs atherosclerotic lesion regression, because of cellular cholesterol efflux defects in haematopoietic stem and progenitor cells (HSPCs), causing monocytosis and impaired atherosclerotic regression. Therefore, we hypothesised that improving cholesterol efflux using a Liver X Receptor (LXR) agonist would improve cholesterol efflux and improve atherosclerotic lesion regression in arthritis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: