Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

A toxin from the spider Phoneutria nigriventer that blocks calcium channels coupled to exocytosis.

  • C Guatimosim‎ et al.
  • British journal of pharmacology‎
  • 1997‎

1. The aim of the present experiments was to investigate the pharmacological action of a toxin from the spider Phoneutria nigriventer, Tx3-3, on the function of calcium channels that control exocytosis of synaptic vesicles. 2. Tx3-3, in confirmation of previous work, diminished the intracellular calcium increase induced by membrane depolarization with KCl (25 mM) in rat cerebrocortical synaptosomes. The toxin was very potent (IC50 0.9 nM) at inhibiting calcium channels that regulate calcium entry in synaptosomes. In addition, Tx3-3 blocked the exocytosis of synaptic vesicles, as measured with the fluorescent dye FM1-43. 3. Using omega-toxins that interact selectively with distinct neuronal calcium channels, we investigated whether the target of Tx3-3 overlaps with known channels that mediate exocytosis. The results indicate that the main population of voltage-sensitive calcium channels altered by Tx3-3 can also be inhibited by omega-agatoxin IVA, an antagonist of P/Q calcium channels. Omega-conotoxin GVIA, which inhibits N type calcium channels did not decrease significantly the entry of calcium or exocytosis of synaptic vesicles in depolarized synaptosomes. 4. It is concluded that Tx3-3 potently inhibits omega-agatoxin IVA-sensitive calcium channels, which are involved in controlling exocytosis in rat brain cortical synaptosomes.


The mGluR5 positive allosteric modulator, CDPPB, ameliorates pathology and phenotypic signs of a mouse model of Huntington's disease.

  • J G Doria‎ et al.
  • Neurobiology of disease‎
  • 2015‎

Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder caused by a polyglutamine expansion in the amino-terminal region of the huntingtin protein (htt), leading to motor dysfunction, cognitive decline, psychiatric alterations, and death. The metabotropic glutamate receptor 5 (mGluR5) has been implicated in HD and we have recently demonstrated that mGluR5 positive allosteric modulators (PAMs) are neuroprotective in vitro. In the present study we demonstrate that the mGluR5 PAM, CDPPB, is a potent neuroprotective drug, in vitro and in vivo, capable of delaying HD-related symptoms. The HD mouse model, BACHD, exhibits many HD features, including neuronal cell loss, htt aggregates, motor incoordination and memory impairment. However, chronic treatment of BACHD mice with CDPPB 1.5 mg/kg s.c. for 18 weeks increased the activation of cell signaling pathways important for neuronal survival, including increased AKT and ERK1/2 phosphorylation and augmented the BDNF mRNA expression. CDPPB chronic treatment was also able to prevent the neuronal cell loss that takes place in the striatum of BACHD mice and decrease htt aggregate formation. Moreover, CDPPB chronic treatment was efficient to partially ameliorate motor incoordination and to rescue the memory deficit exhibited by BACHD mice. Importantly, no toxic effects or stereotypical behavior were observed upon CDPPB chronic treatment. Thus, CDPPB is a potential drug to treat HD, preventing neuronal cell loss and htt aggregate formation and delaying HD symptoms.


Metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of Huntington's disease.

  • J G Doria‎ et al.
  • British journal of pharmacology‎
  • 2013‎

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin protein. We have previously demonstrated that the cell signalling of the metabotropic glutamate receptor 5 (mGluR5) is altered in a mouse model of HD. Although mGluR5-dependent protective pathways are more activated in HD neurons, intracellular Ca²⁺ release is also more pronounced, which could contribute to excitotoxicity. In the present study, we aim to investigate whether mGluR5 positive allosteric modulators (PAMs) could activate protective pathways without triggering high levels of Ca²⁺ release and be neuroprotective in HD.


Homeostatic plasticity induced by increased acetylcholine release at the mouse neuromuscular junction.

  • W L Camargo‎ et al.
  • Neurobiology of aging‎
  • 2022‎

At the neuromuscular junction (NMJ), changes to the size of the postsynaptic potential induce homeostatic compensation. At the Drosophila NMJ, increased glutamate release causes a compensatory decrease in quantal content, but it is unknown if this mechanism operates at the cholinergic mammalian NMJ. We addressed this question by recording endplate potentials (EPP) and muscle contraction in 3-month and 24-month ChAT-ChR2-EYFP mice that overexpress vesicular acetylcholine transporter and release more acetylcholine per vesicle. At 3 months, the quantal content of EPPs from ChAT-ChR2-EYFP mice were not different from WT controls, however tetanic depression was greater, and quantal size during high-frequency stimulation and the size of the readily releasable pool (RRP) were decreased. At 24 months of age, quantal content was reduced in ChAT-ChR2-EYFP mice, which normalized synaptic depression despite smaller RRP. The effect of pancuronium on indirect evoked muscle twitch was not different between groups. These results indicate that an increase in the amount of acetylcholine per vesicle induces two distinct age-dependent homeostatic mechanisms compensating excessive acetylcholine release.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: