Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 29 papers

Thalidomide inhibits alternative activation of macrophages in vivo and in vitro: a potential mechanism of anti-asthmatic effect of thalidomide.

  • Hyun Seung Lee‎ et al.
  • PloS one‎
  • 2015‎

Thalidomide is known to have anti-inflammatory and immunomodulatory actions. However, the effect and the anti-asthmatic mechanism of thalidomide in the pathogenesis of asthmatic airways are not fully understood.


Predictors of the severity and serious outcomes of anaphylaxis in korean adults: a multicenter retrospective case study.

  • Young-Min Ye‎ et al.
  • Allergy, asthma & immunology research‎
  • 2015‎

Differences in definitions of the condition, relevant triggers, and the geographical locations of study centers, cause estimates of the prevalence of anaphylaxis to vary. Recent epidemiological data indicate that the incidence of anaphylaxis is rising.


Petasites japonicus Stimulates the Proliferation of Mouse Spermatogonial Stem Cells.

  • Hye-Ryun Kang‎ et al.
  • PloS one‎
  • 2015‎

Oriental natural plants have been used as medical herbs for the treatment of various diseases for over 2,000 years. In this study, we evaluated the effect of several natural plants on the preservation of male fertility by assessing the ability of plant extracts to stimulate spermatogonial stem cell (SSC) proliferation by using a serum-free culture method. In vitro assays showed that Petasites japonicus extracts, especially the butanol fraction, have a significant effect on germ cells proliferation including SSCs. The activity of SSCs cultured in the presence of the Petasites japonicus butanol fraction was confirmed by normal colony formation and spermatogenesis following germ cell transplantation of the treated SSCs. Our findings could lead to the discovery of novel factors that activate SSCs and could be useful for the development of technologies for the prevention of male infertility.


Probiotic NVP-1703 Alleviates Allergic Rhinitis by Inducing IL-10 Expression: A Four-week Clinical Trial.

  • Min-Gyu Kang‎ et al.
  • Nutrients‎
  • 2020‎

Although several recent studies reported that probiotics might be beneficial for allergic rhinitis (AR), the effect of probiotics on AR is not consistent and have not been reproduced between studies. We aimed to determine the efficacy and safety of probiotic NVP-1703, a mixture of Bifidobacterium longum and Lactobacillus plantarum, in subjects with perennial AR. Adult subjects with perennial AR received either NVP-1703 (n = 47) or placebo (n = 48) for four weeks. Total nasal symptom scores (TNSS), rhinitis control assessment test (RCAT), blood eosinophil count, allergen-specific IgE, and immunological parameters in serum and urine were compared at baseline and after four weeks. TNSS changes from baseline at weeks 1, 3, and 4 were significant between the NVP-1703 and placebo groups (p = 0.033, 0.031, and 0.029, respectively). RCAT score showed significant differences between the NVP-1703 and placebo groups (p = 0.049) at week 4. Dermatophagoides farinae-specific IgE levels and serum IL-10 levels were significantly different between the NVP-1703 and placebo groups (p = 0.033 and p = 0.047, respectively). IL-10/IL-4 and IL-10/IL-13 ratios were different between the NVP-1703 and placebo groups at week 4 (p = 0.046 and 0.018, respectively). NVP-1703 treatment reduced urinary prostaglandin F2α and leukotriene E4 levels (p > 0.05). Therefore, NVP-1703 can be treatment option for perennial AR.


Lung virome: New potential biomarkers for asthma severity and exacerbation.

  • Sungmi Choi‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2021‎

Although some respiratory virus infections are known to contribute to the development and exacerbation of asthma, commensal viromes in airway have not been extensively studied due to technical challenges.


Circulation Time-Optimized Albumin Nanoplatform for Quantitative Visualization of Lung Metastasis via Targeting of Macrophages.

  • Hyewon Chung‎ et al.
  • ACS nano‎
  • 2022‎

The development of molecular imaging probes to identify key cellular changes within lung metastases may lead to noninvasive detection of metastatic lesions in the lung. In this study, we constructed a macrophage-targeted clickable albumin nanoplatform (CAN) decorated with mannose as the targeting ligand using a click reaction to maintain the intrinsic properties of albumin in vivo. We also modified the number of mannose molecules on the CAN and found that mannosylated serum albumin (MSA) harboring six molecules of mannose displayed favorable pharmacokinetics that allowed high-contrast imaging of the lung, rendering it suitable for in vivo visualization of lung metastases. Due to the optimized control of functionalization and surface modification, MSA enhanced blood circulation time and active/passive targeting abilities and was specifically incorporated by mannose receptor (CD206)-expressing macrophages in the metastatic lung. Moreover, extensive in vivo imaging studies using single-photon emission computed tomography (SPECT)/CT and positron emission tomography (PET) revealed that blood circulation of time-optimized MSA can be used to discern metastatic lesions, with a strong correlation between its signal and metastatic burden in the lung.


Semaphorin 7A plays a critical role in TGF-beta1-induced pulmonary fibrosis.

  • Hye-Ryun Kang‎ et al.
  • The Journal of experimental medicine‎
  • 2007‎

Semaphorin (SEMA) 7A regulates neuronal and immune function. In these studies, we tested the hypothesis that SEMA 7A is also a critical regulator of tissue remodeling. These studies demonstrate that SEMA 7A and its receptors, plexin C1 and beta1 integrins, are stimulated by transforming growth factor (TGF)-beta(1) in the murine lung. They also demonstrate that SEMA 7A plays a critical role in TGF-beta(1)-induced fibrosis, myofibroblast hyperplasia, alveolar remodeling, and apoptosis. TGF-beta(1) stimulated SEMA 7A via a largely Smad 3-independent mechanism and stimulated SEMA 7A receptors, matrix proteins, CCN proteins, fibroblast growth factor 2, interleukin 13 receptor components, proteases, antiprotease, and apoptosis regulators via Smad 2/3-independent and SEMA 7A-dependent mechanisms. SEMA 7A also played an important role in the pathogenesis of bleomycin-induced pulmonary fibrosis. TGF-beta(1) and bleomycin also activated phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB)/AKT via SEMA 7A-dependent mechanisms, and PKB/AKT inhibition diminished TGF-beta(1)-induced fibrosis. These observations demonstrate that SEMA 7A and its receptors are induced by TGF-beta(1) and that SEMA 7A plays a central role in a PI3K/PKB/AKT-dependent pathway that contributes to TGF-beta(1)-induced fibrosis and remodeling. They also demonstrate that the effects of SEMA 7A are not specific for transgenic TGF-beta(1), highlighting the importance of these findings for other fibrotic stimuli.


Alteration of Lung and Gut Microbiota in IL-13-Transgenic Mice Simulating Chronic Asthma.

  • Kyoung-Hee Sohn‎ et al.
  • Journal of microbiology and biotechnology‎
  • 2020‎

Increasing evidence suggests a potential role of microbial colonization in the inception of chronic airway diseases. However, it is not clear whether the lung and gut microbiome dysbiosis is coincidental or a result of mutual interaction. In this study, we investigated the airway microbiome in interleukin 13 (IL-13)-rich lung environment and related alterations of the gut microbiome. IL-13- overexpressing transgenic (TG) mice presented enhanced eosinophilic inflammatory responses and mucus production, together with airway hyperresponsiveness and subepithelial fibrosis. While bronchoalveolar lavage fluid and cecum samples obtained from 10-week-old IL-13 TG mice and their C57BL/6 wild-type (WT) littermates showed no significant differences in alpha diversity of lung and gut microbiome, they presented altered beta diversity in both lung and gut microbiota in the IL-13 TG mice compared to the WT mice. Lung-specific IL-13 overexpression also altered the composition of the gut as well as the lung microbiome. In particular, IL-13 TG mice showed an increased proportion of Proteobacteria and Cyanobacteria and a decreased amount of Bacteroidetes in the lungs, and depletion of Firmicutes and Proteobacteria in the gut. The patterns of polymicrobial interaction within the lung microbiota were different between WT and IL-13 TG mice. For instance, in IL-13 TG mice, lung Mesorhizobium significantly affected the alpha diversity of both lung and gut microbiomes. In summary, chronic asthma-like pathologic changes can alter the lung microbiota and affect the gut microbiome. These findings suggest that the lung-gut microbial axis might actually work in asthma.


Microbiome profiling of uncinate tissue and nasal polyps in patients with chronic rhinosinusitis using swab and tissue biopsy.

  • Sung-Woo Cho‎ et al.
  • PloS one‎
  • 2021‎

Chronic rhinosinusitis (CRS) is characterized according to the presence or absence of nasal polyps (NPs) and displays nasal microbiota dysbiosis. However, optimal sampling methods of the nasal microbiome in CRS have not been identified. We aimed to assess the microbial composition in patients with CRS, comparing different sampling methods (swab and tissue biopsy), tissue types (uncinate tissue and NP), and disease subtypes. Samples were obtained by swabbing the middle meatus and taking a biopsy of uncinate tissue (UT) in patients with CRS with (CRSwNP, N = 8) or without NP (CRSsNP, N = 6) and controls (N = 8). NPs were also harvested in CRSwNP. DNAs were extracted from fifty-two samples and analyzed by 16S rRNA gene amplicon sequencing. As a result, a great interpersonal variance was observed in nasal swabs, while UT samples presented distinct microbiome with low inter-personal differences. Moreover, the UT microbiomes were further differentiated into three clusters which are associated with disease status (control, CRSsNP, and CRSwNP). Compared to UT, NP revealed a unique microbiome profile with significantly less bacterial diversity. Prevotella was the genus whose abundance was negatively correlated with disease severity in NP. In conclusion, tissue samples are better specimens than nasal swabs for assessing the microbiomes of CRS patients. Several bacteria in UT and NP tissues revealed an association with clinical severity of CRSwNP.


Mesenchymal Stem Cells Attenuate Asthmatic Inflammation and Airway Remodeling by Modulating Macrophages/Monocytes in the IL-13-Overexpressing Mouse Model.

  • Yosep Mo‎ et al.
  • Immune network‎
  • 2022‎

Mesenchymal stem cells (MSCs) are attractive alternatives to conventional anti-asthmatic drugs for severe asthma. Mechanisms underlying the anti-asthmatic effects of MSCs have not yet been elucidated. This study evaluated the anti-asthmatic effects of intravenously administered MSCs, focusing on macrophages and monocytes. Seven-week-old transgenic (Tg) mice with lung-specific overexpression of IL-13 were used to simulate chronic asthma. MSCs were intravenously administered four days before sampling. We examined changes in immune cell subpopulations, gene expression, and histological phenotypes. IL-13 Tg mice exhibited diverse features of chronic asthma, including severe type 2 inflammation, airway fibrosis, and mucus metaplasia. Intravenous administration of MSCs attenuated these asthmatic features just four days after a single treatment. MSC treatment significantly reduced SiglecF-CD11c-CD11b+ monocyte-derived macrophages (MoMs) and inhibited the polarization of MoMs into M2 macrophages, especially M2a and M2c. Furthermore, MSCs downregulated the excessive accumulation of Ly6c- monocytes in the lungs. While an intravenous adoptive transfer of Ly6c- monocytes promoted the infiltration of MoM and Th2 inflammation, that of MSC-exposed Ly6c- monocytes did not. Ex vivo Ly6c- MoMs upregulated M2-related genes, which were reduced by MSC treatment. Molecules secreted by Ly6c- MoMs from IL-13 Tg mice lungs upregulated the expression of fibrosis-related genes in fibroblasts, which were also suppressed by MSC treatment. In conclusion, intravenously administered MSCs attenuate asthma phenotypes of chronic asthma by modulating macrophages. Identifying M2 macrophage subtypes revealed that exposure to MSCs transforms the phenotype and function of macrophages. We suggest that Ly6c- monocytes could be a therapeutic target for asthma management.


Idiopathic hypereosinophilia is clonal disorder? Clonality identified by targeted sequencing.

  • Jee-Soo Lee‎ et al.
  • PloS one‎
  • 2017‎

Idiopathic hypereosinophilia (IHE)/idiopathic hypereosinophilic syndrome (IHES) has been defined by a persistent elevation of the blood eosinophil count exceeding 1.5×103/μL, without evidence of reactive or clonal causes. While T-cell clonality assessment has been recommended for unexplained hypereosinophilia, this approach is not often applied to routine practice in the clinic. We hypothesized that the clonality would exist in a subset of IHE/IHES patients. We aimed to investigate the candidate mutations and T-cell clonality in IHE/IHES and to explore the role of mutations in eosinophil proliferation. We performed targeted capture sequencing for 88 genes using next-generation sequencing, T-cell receptor (TCR) gene rearrangement assays, and pathway network analysis in relation to eosinophil proliferation. By targeted sequencing, 140 variants in 59 genes were identified. Sixteen out of 30 patients (53.3%) harbored at least one candidate mutation. The most frequently affected genes were NOTCH1 (26.7%), SCRIB and STAG2 (16.7%), and SH2B3 (13.3%). Network analysis revealed that our 21 candidate genes (BIRC3, BRD4, CSF3R, DNMT3A, EGR2, EZH2, FAT4, FLT3, GATA2, IKZF, JAK2, MAPK1, MPL, NF1, NOTCH1, PTEN, RB1, RUNX1, TET2, TP53 and WT1) are functionally linked to the eosinophilopoietic pathway. Among the 21 candidate genes, five genes (MAPK1, RUNX1, GATA2, NOTCH1 and TP53) with the highest number of linkages were considered major genes. A TCR assay revealed that four patients (13.3%) had a clonal TCR rearrangement. NOTCH1 was the most frequently mutated gene and was shown to be a common node for eosinophilopoiesis in our network analysis, while the possibility of hidden T cell malignancy was indwelling in the presence of NOTCH1 mutation, though not revealed by aberrant T cell study. Collectively, these results provide new evidence that mutations affecting eosinophilopoiesis underlie a subset of IHE/IHES, and the candidate genes are inferred to act their potential roles in the eosinophilopoietic pathway.


Ultra-high-resolution computed tomography shows changes in the lungs related with airway hyperresponsiveness in a murine asthma model.

  • Jae-Woo Jung‎ et al.
  • Scientific reports‎
  • 2021‎

In vivo presentation of airway hyper-responsiveness (AHR) at the different time points of the allergic reaction is not clearly understood. The purpose of this study was to investigate how AHR manifests in the airway and the lung parenchyma in vivo following exposure to different stimuli and in the early and late phases of asthma after allergen exposure. Ovalbumin (OVA)-induced allergic asthma model was established using 6-week female BALB/c mice. Enhanced pause was measured with a non-invasive method to assess AHR. The dynamic changes of the airway and lung parenchyma were evaluated with ultra-high-resolution computed tomography (128 multi-detector, 1024 × 1024 matrix) for 10 h. While the methacholine challenge showed no grossly visible changes in the proximal airway and lung parenchyma despite provoking AHR, the OVA challenge induced significant immediate changes manifesting as peribronchial ground glass opacities, consolidations, air-trapping, and paradoxical proximal airway dilatations. After resolution of immediate response, multiple episodes of AHRs occurred with paradoxical proximal airway dilatation and peripheral air-trapping in late phase over a prolonged time period in vivo. Understanding of airflow limitation based on the structural changes of asthmatic airway would be helpful to make an appropriate drug delivery strategy for the treatment of asthma.


Tranglutaminase 2 contributes to the asthmatic inflammation by modulating activation of alveolar macrophages.

  • Hyun Seung Lee‎ et al.
  • Immunity, inflammation and disease‎
  • 2021‎

Transglutaminase 2 (TG2), a multifunctional calcium-dependent acyltransferase, is upregulated in asthmatic airways and reported to play a role in the pathogenesis of allergic asthma. However, the underlying mechanism is not fully understood.


Standard-based comprehensive detection of adverse drug reaction signals from nursing statements and laboratory results in electronic health records.

  • Suehyun Lee‎ et al.
  • Journal of the American Medical Informatics Association : JAMIA‎
  • 2017‎

We propose 2 Medical Dictionary for Regulatory Activities-enabled pharmacovigilance algorithms, MetaLAB and MetaNurse, powered by a per-year meta-analysis technique and improved subject sampling strategy.


Airway Smooth Muscle Sensitivity to Methacholine in Precision-Cut Lung Slices (PCLS) from Ovalbumin-induced Asthmatic Mice.

  • Hae Jin Kim‎ et al.
  • The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology‎
  • 2015‎

Asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness (AHR) and reversible airway obstruction. Methacholine (MCh) is widely used in broncho-provocation test to evaluate airway resistance. For experimental investigation, ovalbumin-induced sensitization is frequently used in rodents (Ova-asthma). However, albeit the inflammatory histology and AHR in vivo, it remains unclear whether the MCh sensitivity of airway smooth muscle isolated from Ova-asthma is persistently changed. In this study, the contractions of airways in precision-cut lung slices (PCLS) from control, Ova-asthma, and IL-13 overexpressed transgenic mice (IL-13TG) were compared by analyzing the airway lumen space (AW). The airway resistance in vivo was measured using plethysmograph. AHR and increased inflammatory cells in BAL fluid were confirmed in Ova-asthma and IL-13TG mice. In the PCLS from all three groups, MCh concentration-dependent narrowing of airway lumen (ΔAW) was observed. In contrast to the AHR in vivo, the EC50 of MCh for ΔAW from Ova-asthma and IL-13TG were not different from control, indicating unchanged sensitivity to MCh. Although the AW recovery upon MCh-washout showed sluggish tendency in Ova-asthma, the change was also statistically insignificant. Membrane depolarization-induced ΔAW by 60 mM K(+) (60K-contraction) was larger in IL-13TG than control, whereas 60K-contraction of Ova-asthma was unaffected. Furthermore, serotonin-induced ΔAW of Ova-asthma was smaller than control and IL-13TG. Taken together, the AHR in Ova-asthma and IL-13TG are not reflected in the contractility of isolated airways from PCLS. The AHR of the model animals seems to require intrinsic agonists or inflammatory microenvironment that is washable during tissue preparation.


Chronic low dose chlorine exposure aggravates allergic inflammation and airway hyperresponsiveness and activates inflammasome pathway.

  • Sae-Hoon Kim‎ et al.
  • PloS one‎
  • 2014‎

Epidemiologic clinical studies suggested that chronic exposure to chlorine products is associated with development of asthma and aggravation of asthmatic symptoms. However, its underlying mechanism was not clearly understood. Studies were undertaken to define the effects and mechanisms of chronic low-dose chlorine exposure in the pathogenesis of airway inflammation and airway hyperresponsiveness (AHR).


The invariant natural killer T cell-mediated chemokine X-C motif chemokine ligand 1-X-C motif chemokine receptor 1 axis promotes allergic airway hyperresponsiveness by recruiting CD103+ dendritic cells.

  • Yeon Duk Woo‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2018‎

The chemokine X-C motif chemokine ligand 1 (XCL1)-X-C motif chemokine receptor 1 (XCR1) axis has been reported to play a role in immune homeostasis and inflammation. However, it is not known whether this axis has a critical function in patients with allergic asthma.


Functional Defects in Type 3 Innate Lymphoid Cells and Classical Monocytes in a Patient with Hyper-IgE Syndrome.

  • Yuna Chang‎ et al.
  • Immune network‎
  • 2017‎

Hyper-IgE syndrome (HIES) is a very rare primary immune deficiency characterized by elevated serum IgE levels, recurrent bacterial infections, chronic dermatitis, and connective tissue abnormalities. Autosomal dominant (AD) HIES involves a mutation in signal transducer and activator of transcription 3 (STAT3) that leads to an impaired TH17 response. STAT3 signaling is also involved in the function of RORγt+ type 3 innate lymphoid cells (ILC3s) and RORγt+TH17 cells. The aim of this study was to investigate the role of innate immune cells such as innate lymphoid cells (ILCs), granulocytes, and monocytes in a patient with HIES. Peripheral blood mononuclear cells (PBMCs) from a patient with HIES and three age-matched healthy controls were obtained for the analysis of the innate and adaptive immune cells. The frequencies of ILCs in PBMCs were lower in the patient with HIES than in the controls. Moreover, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-17A produced by ILC3s in PBMCs were lower in the patient with HIES than the controls. Compared with the controls, classical monocytes (CD14+CD16low), which have a high antimicrobial capability, were also lower in the patient with HIES, while non-classical monocytes (CD14lowCD16+) as well as intermediate monocytes (CD14+CD16intermediate) were higher. Taken together, these results indicate that the impaired immune defense against pathogenic microbes in the patient with HIES might be partially explained by functional defects in ILC3s and inflammatory monocytes.


Mesenchymal stem cells exert their anti-asthmatic effects through macrophage modulation in a murine chronic asthma model.

  • Ruth Lee Kim‎ et al.
  • Scientific reports‎
  • 2022‎

Despite numerous previous studies, the full action mechanism of the pathogenesis of asthma remains undiscovered, and the need for further investigation is increasing in order to identify more effective target molecules. Recent attempts to develop more efficacious treatments for asthma have incorporated mesenchymal stem cell (MSC)-based cell therapies. This study aimed to evaluate the anti-asthmatic effects of MSCs primed with Liproxstatin-1, a potent ferroptosis inhibitor. In addition, we sought to examine the changes within macrophage populations and their characteristics in asthmatic conditions. Seven-week-old transgenic mice, constitutively overexpressing lung-specific interleukin (IL)-13, were used to simulate chronic asthma. Human umbilical cord-derived MSCs (hUC-MSCs) primed with Liproxstatin-1 were intratracheally administered four days prior to sampling. IL-13 transgenic mice demonstrated phenotypes of chronic asthma, including severe inflammation, goblet cell hyperplasia, and subepithelial fibrosis. Ly6C+M2 macrophages, found within the pro-inflammatory CD11c+CD11b+ macrophages, were upregulated and showed a strong correlation with lung eosinophil counts. Liproxstatin-1-primed hUC-MSCs showed enhanced ability to downregulate the activation of T helper type 2 cells compared to naïve MSCs in vitro and reduced airway inflammation, particularly Ly6C+M2 macrophages population, and fibrosis in vivo. In conclusion, intratracheal administration is an effective method of MSC delivery, and macrophages hold great potential as an additional therapeutic target for asthma.


Intravenous Mesenchymal Stem Cell Administration Modulates Monocytes/Macrophages and Ameliorates Asthmatic Airway Inflammation in a Murine Asthma Model.

  • Yosep Mo‎ et al.
  • Molecules and cells‎
  • 2022‎

Although asthma is a common chronic airway disease that responds well to anti-inflammatory agents, some patients with asthma are unresponsive to conventional treatment. Mesenchymal stem cells (MSCs) have therapeutic potential for the treatment of inflammatory diseases owing to their immunomodulatory properties. However, the target cells of MSCs are not yet clearly known. This study aimed to determine the effect of human umbilical cord-derived MSCs (hUC-MSCs) on asthmatic lungs by modulating innate immune cells and effector T cells using a murine asthmatic model. Intravenously administered hUC-MSCs reduced airway resistance, mucus production, and inflammation in the murine asthma model. hUC-MSCs attenuated not only T helper (Th) 2 cells and Th17 cells but also augmented regulatory T cells (Tregs). As for innate lymphoid cells (ILC), hUC-MSCs effectively suppressed ILC2s by downregulating master regulators of ILC2s, such as Gata3 and Tcf7. Finally, regarding lung macrophages, hUC-MSCs reduced the total number of macrophages, particularly the proportion of the enhanced monocyte-derived macrophage population. In a closer examination of monocyte-derived macrophages, hUC-MSCs reduced the M2a and M2c populations. In conclusion, hUC-MSCs can be considered as a potential anti- asthmatic treatment given their therapeutic effect on the asthmatic airway inflammation in a murine asthma model by modulating innate immune cells, such as ILC2s, M2a, and M2c macrophages, as well as affecting Tregs and effector T cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: