Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

CXCR7: a β-arrestin-biased receptor that potentiates cell migration and recruits β-arrestin2 exclusively through Gβγ subunits and GRK2.

  • Huong Thi Nguyen‎ et al.
  • Cell & bioscience‎
  • 2020‎

Some chemokine receptors referred to as atypical chemokine receptors (ACKRs) are thought to non-signaling decoys because of their inability to activate typical G-protein signaling pathways. CXCR7, also known as ACKR3, binds to only two chemokines, SDF-1α and I-TAC, and recruits β-arrestins. SDF-1α also binds to its own conventional receptor, CXCR4, involving in homeostatic modulation such as development and immune surveillance as well as pathological conditions such as inflammation, ischemia, and cancers. Recently, CXCR7 is suggested as a key therapeutic target together with CXCR4 in such conditions. However, the molecular mechanisms underlying cellular responses and functional relation with CXCR7 and CXCR4 have not been elucidated, despite massive studies. Therefore, we aimed to reveal the molecular networks of CXCR7 and CXCR4 and compare their effects on cell migration.


First field evaluation of the optimized CE marked Abbott protocol for HIV RNA testing on dried blood spot in a routine clinical setting in Vietnam.

  • Fabien Taieb‎ et al.
  • PloS one‎
  • 2018‎

Viral load (VL) monitoring of HIV-infected patients in decentralized areas is limited due to logistic constraints. Dried Blood Spots (DBS) offer the opportunity to collect samples in remote area which can be easily transferred and tested at a central laboratory. The MOVIDA (Monitoring Of Viral load In Decentralized Area) project evaluated the performance of VL measurements on DBS using the new CE marked optimized Abbott protocol.


Fate of carotenoid-producing Bacillus aquimaris SH6 colour spores in shrimp gut and their dose-dependent probiotic activities.

  • Huong Thi Nguyen‎ et al.
  • PloS one‎
  • 2018‎

Bacillus aquimaris SH6 spores produce carotenoids that are beneficial to white-leg shrimp (Litopenaeus vannamei) health. However, the optimal dose and mechanisms behind these effects are not well understood. We investigated the fate of SH6 spores in the gut of L. vannamei. Shrimp were divided into six groups administrated with either feed only (negative control) or SH6 spores at 5 × 106 CFU/g pellet (high dose, SH6 spore-H group), 1 × 106 CFU/g pellet (medium dose, SH6 spore-M group), 2 × 105 CFU/g pellet (low dose, SH6 spore-L group), astaxanthin at 0.5 mg/g pellet (Carophyll group), or carotenoids from SH6 vegetative cells at 5 μg/g pellet (SH6 carotenoid group). The growth rate was highest in SH6 spore-H (3.38%/day), followed by SH6 spore-M (2.84%/day) and SH6 spore-L (2.25%/day), which was significantly higher than the control (1.45%/day), Carophyll (1.53%/day) or SH6 carotenoid (1.57%/day) groups. The astaxanthin levels (1.9-2.0 μg/g shrimp) and red-colour scores (21-22) in SH6 spore-H/M were higher than the control (astaxanthin: 1.2 μg/g shrimp; red score: 20) or SH6 spore-L, but lower than the Carophyll and SH6 carotenoids. Feeding with medium and high doses of SH6 spores after 28 days resulted in respective 1.3-2-fold increases in phenol oxidase activity and 8-9 fold increases in Rho mRNA expression compared to the control and low dose group. The live-counts of SH6 in the gut gradually increased during the 28-day feeding period with SH6 spores at different concentrations, starting from 4.1, 8.2, and 5.4 × 104 CFU/g gut at day 1 and reaching 5.3, 5.1, and 4.4 × 105 CFU/g gut in the SH6-H/M/L groups, respectively, at day 28. Gut microbiota became more diversified, resulting in a 2-8-fold increase in total bacterial live-counts compared to the controls. SH6 spore germination was detected by measuring the mRNA expression of a specific sequence coding for SH6 amylase at 4 h, reaching saturation at 24 h. Our results confirm that SH6 spores colonize and germinate in the gut to improve the microbial diversity and boost the immune system of shrimp, exhibiting beneficial effects at >1 × 106 CFU/g pellet.


Functional Analysis of CXCR3 Splicing Variants and Their Ligands Using NanoBiT-Based Molecular Interaction Assays.

  • Huong Thi Nguyen‎ et al.
  • Molecules and cells‎
  • 2023‎

CXCR3 regulates leukocyte trafficking, maturation, and various pathophysiological conditions. Alternative splicing generates three CXCR3 isoforms in humans. Previous studies investigated the roles of CXCR3 isoforms, and some biochemical data are not correlated with biological relevance analyses. RT-PCR analyses indicate that most cells express all three splicing variants, suggesting that they may mutually affect the chemokine binding and cellular responses of other splicing variants. Here, we performed an integrative analysis of the functional relations among CXCR3 splicing variants and their chemokine-dependent signaling using NanoBiT live cell protein interaction assays. The results indicated that the CXCR3 N-terminal region affected cell surface expression levels and ligand-dependent activation. CXCR3A was efficiently expressed in the plasma membrane and responded to I-TAC, IP-10, and MIG chemokines. By contrast, CXCR3B had low plasma membrane expression and mediated I-TAC-stimulated cellular responses. CXCR3Alt was rarely expressed on the cell surface and did not mediate any cell responses to the tested chemokines; however, CXCR3Alt negatively affected the plasma membrane expression of CXCR3A and CXCR3B and their chemokine-stimulated cellular responses. Jurkat cells express endogenous CXCR3, and exogenous CXCR3A expression enhanced chemotactic activity in response to I-TAC, IP-10, and MIG. By contrast, exogenous expression of CXCR3B and CXCR3Alt eliminated or reduced the CXCR3A-induced chemotactic activity. The PF-4 chemokine did not activate any CXCR3-mediated cellular responses. NanoBiT technology are useful to integrative studies of CXCR3-mediated cell signaling, and expand our knowledge of the cellular responses mediated by molecular interactions among the splicing variants, including cell surface expression, ligand-dependent receptor activation, and chemotaxis.


Lactobacillus reuteri MJM60668 Prevent Progression of Non-Alcoholic Fatty Liver Disease through Anti-Adipogenesis and Anti-inflammatory Pathway.

  • Pia Werlinger‎ et al.
  • Microorganisms‎
  • 2022‎

Non-alcoholic fatty liver disease (NALFD) is a disease characterized by liver steatosis. The liver is a key organ involved in the metabolism of fat, protein, and carbohydrate, enzyme activation, and storage of glycogen, which is closely related to the intestine by the bidirectional relation of the gut-liver axis. Abnormal intestinal microbiota composition can affect energy metabolism and lipogenesis. In this experiment, we investigated the beneficial effect of Lactobacillus reuteri MJM60668 on lipid metabolism and lipogenesis. C57BL/6 mice were fed a high-fat diet (HFD) and orally administrated with MJM60668. Our results showed that mice treated with MJM60668 significantly decreased liver weight and liver/body weight ratio, without affecting food intake. Serum levels of ALT, AST, TG, TCHO, and IL-1β in mice fed with MJM60668 were decreased compared to the HFD group. Investigation of gene and protein expression on the lipogenesis and lipid metabolism showed that the expression of ACC, FAS, and SREBP was decreased, and PPARα and CPT was increased. Furthermore, an increase of adiponectin in serum was shown in our experiment. Moreover, serum IL-1β level was also significantly decreased in the treated mice. These results suggested that MJM60668 can strongly inhibit lipogenesis, enhance fatty acid oxidation, and suppress inflammation. Additionally, supplementation of MJM60668 increased the proportion of Akkermansiaceae and Lachnospiracea, confirming a potential improvement of gut microbiota, which is related to mucus barrier and decrease of triglycerides levels.


The N-terminus of CXCR4 splice variants determines expression and functional properties.

  • Hee-Kyung Park‎ et al.
  • PloS one‎
  • 2023‎

C-X-C motif chemokine ligand 12(CXCL12) is an essential chemokine for organ development and homeostasis in multiple tissues. Its receptor, C-X-C chemokine receptor type 4(CXCR4), is expressed on the surface of target cells. The chemokine and receptor are expressed almost ubiquitously in human tissues and cells throughout life, and abnormal expression of CXCL12 and CXCR4 is observed in pathological conditions, such as inflammation and cancer. CXCR4 is reportedly translated into five splicing variants of different lengths, which each have different amino acids in the N-terminus. As the N-terminus is the first recognition site for chemokines, CXCR4 variants may respond differently to CXCL12. Despite these differences, the molecular and functional properties of CXCR4 variants have not been thoroughly described or compared. Here, we explored the expression of CXCR4 variants in cell lines and analyzed their roles in cellular responses using biochemical approaches. RT-PCR revealed that most cell lines express more than one CXCR4 variant. When expressed in HEK293 cells, the CXCR4 variants differed in protein expression efficiency and cell surface localization. Although variant 2 demonstrated the strongest expression and cell surface localization, variants 1, 3, and 5 also mediated chemokine signaling and induced cellular responses. Our results demonstrate that the N-terminal sequences of each CXCR4 variant determine the expression of the receptor and affect ligand recognition. Functional analyses revealed that CXCR4 variants may also affect each other or interact during CXCL12-stimulated cellular responses. Altogether, our results suggest that CXCR4 variants may have distinct functional roles that warrant additional investigation and could contribute to future development of novel drug interventions.


Analysis of CCR2 splice variant expression patterns and functional properties.

  • Hee-Kyung Park‎ et al.
  • Cell & bioscience‎
  • 2022‎

C-C motif chemokine receptor 2 (CCR2), the main receptor for monocyte chemoattractant protein-1 (MCP-1), is expressed on immune cells, including monocytes, macrophages, and activated T cells, and mediates cell migration toward MCP-1 in inflammation-related diseases. The CCR2 gene encodes two isoforms: CCR2A and CCR2B. The CCR2B open reading frame is localized in a single exon, similar to other chemokine receptors, and CCR2A and CCR2B feature different amino acid sequences in their C-terminal intracellular loops due to alternative splicing. Most biochemical studies on CCR2-related cellular responses in the immune system have focused on CCR2B, with few reports focused on CCR2A. Understanding the functional properties of CCR2A in cellular responses may elucidate the roles played by MCP-1 and CCR2 in pathophysiological responses.


Establishment of a NanoBiT-Based Cytosolic Ca2+ Sensor by Optimizing Calmodulin-Binding Motif and Protein Expression Levels.

  • Lan Phuong Nguyen‎ et al.
  • Molecules and cells‎
  • 2020‎

Cytosolic Ca2+ levels ([Ca2+]c) change dynamically in response to inducers, repressors, and physiological conditions, and aberrant [Ca2+]c concentration regulation is associated with cancer, heart failure, and diabetes. Therefore, [Ca2+]c is considered as a good indicator of physiological and pathological cellular responses, and is a crucial biomarker for drug discovery. A genetically encoded calcium indicator (GECI) was recently developed to measure [Ca2+]c in single cells and animal models. GECI have some advantages over chemically synthesized indicators, although they also have some drawbacks such as poor signal-to-noise ratio (SNR), low positive signal, delayed response, artifactual responses due to protein overexpression, and expensive detection equipment. Here, we developed an indicator based on interactions between Ca2+-loaded calmodulin and target proteins, and generated an innovative GECI sensor using split nano-luciferase (Nluc) fragments to detect changes in [Ca2+]c. Stimulation-dependent luciferase activities were optimized by combining large and small subunits of Nluc binary technology (NanoBiT, LgBiT:SmBiT) fusion proteins and regulating the receptor expression levels. We constructed the binary [Ca2+]c sensors using a multicistronic expression system in a single vector linked via the internal ribosome entry site (IRES), and examined the detection efficiencies. Promoter optimization studies indicated that promoter-dependent protein expression levels were crucial to optimize SNR and sensitivity. This novel [Ca2+]c assay has high SNR and sensitivity, is easy to use, suitable for high-throughput assays, and may be useful to detect [Ca2+]c in single cells and animal models.


SP-8356, a (1S)-(-)-verbenone derivative, exerts in vitro and in vivo anti-breast cancer effects by inhibiting NF-κB signaling.

  • Sunam Mander‎ et al.
  • Scientific reports‎
  • 2019‎

Breast cancer exhibits high lethality in women because it is frequently detected at an advanced stage and aggressive forms such as triple-negative breast cancer (TNBC), which are often characterized by metastasis through colonization of secondary tumors. Thus, developing therapeutic agents that target the metastatic process is crucial to successfully treat aggressive breast cancer. We evaluated SP-8356, an anti-inflammatory synthetic verbenone derivative, with respect to its regulation of breast cancer cell behavior and cancer progression. Treatment of SP-8356 arrested cell cycle and reduced growth in various types of breast cancer cells with mild cytotoxicity. Particularly, SP-8356 significantly reduced the motility and invasiveness of TNBC cells. Assays using an in vivo xenograft mouse model confirmed the cell-specific anti-proliferative and anti-metastatic activity of SP-8356. Functional studies revealed that SP-8356 suppressed serum response element-dependent reporter gene expression and NF-κB-related signaling, resulting in downregulation of many genes related to cancer invasion. We conclude that SP-8356 suppresses breast cancer progression through multimodal functions, including inhibition of NF-κB signaling and growth-related signaling pathways.


Comparison of the microdrop and minimum volume cooling methods for vitrification of porcine in vitro-produced zygotes and blastocysts after equilibration in low concentrations of cryoprotectant agents.

  • Van Khanh Nguyen‎ et al.
  • The Journal of reproduction and development‎
  • 2018‎

We compared the efficacy of the microdrop and minimum volume cooling (MVC) methods for the vitrification of in vitro-produced porcine zygotes and blastocysts after equilibration in low concentrations of cryoprotectant agents. Zygotes and blastocysts were equilibrated in 2% (v/v) ethylene glycol and 2% (v/v) propylene glycol for 13-15 min. Then, they were vitrified in a medium comprised of 17.5% ethylene glycol, 17.5% propylene glycol, 0.3 M sucrose, and 50 mg/ml polyvinylpyrrolidone either by either dropping them directly into liquid nitrogen (microdrop method) or placing them on Cryotop sheets in a minimum volume of medium and plunging into liquid nitrogen (MVC method). Both zygotes and blastocysts were successfully vitrified. For the vitrification of zygotes, the MVC and microdrop methods were equally effective; however, for blastocyst vitrification, MVC was superior. For both methods, the vitrification of zygotes produced higher-quality embryos than the vitrification of blastocysts.


SP-8356, a (1S)-(-)-Verbenone Derivative, Inhibits the Growth and Motility of Liver Cancer Cells by Regulating NF-κB and ERK Signaling.

  • Dong Hwi Kim‎ et al.
  • Biomolecules & therapeutics‎
  • 2021‎

Liver cancer is a common tumor and currently the second leading cause of cancer-related mortality globally. Liver cancer is highly related to inflammation as more than 90% of liver cancer arises in the context of hepatic inflammation, such as hepatitis B virus and hepatitis C virus infection. Despite significant improvements in the therapeutic modalities for liver cancer, patient prognosis is not satisfactory due to the limited efficacy of current drug therapies in anti-metastatic activity. Therefore, developing new effective anti-cancer agents with anti-metastatic activity is important for the treatment of liver cancer. In this study, SP-8356, a verbenone derivative with anti-inflammatory activity, was investigated for its effect on the growth and migration of liver cancer cells. Our findings demonstrated that SP-8356 inhibits the proliferation of liver cancer cells by inducing apoptosis and suppressing the mobility and invasion ability of liver cancer cells. Functional studies revealed that SP-8356 inhibits the mitogen-activated protein kinase and nuclear factor-kappa B signaling pathways, which are related to cell proliferation and metastasis, resulting in the downregulation of metastasis-related genes. Moreover, using an orthotopic liver cancer model, tumor growth was significantly decreased following treatment with SP-8356. Thus, this study suggests that SP-8356 may be a potential agent for the treatment of liver cancer with multimodal regulation.


Neurokinin-2 receptor negatively modulates substance P responses by forming complex with Neurokinin-1 receptor.

  • Lan Phuong Nguyen‎ et al.
  • Cell & bioscience‎
  • 2023‎

Tachykinins and their cognate receptors, neurokinin receptors (NKs) including NK1, NK2, and NK3 play vital roles in regulating various physiological processes including neurotransmission, nociception, inflammation, smooth muscle contractility, and stimulation of endocrine and exocrine gland secretion. Their abnormal expression has been reported to be associated with neurological disorders, inflammation, and cancer. Even though NKs are expressed in the same cells with their expression being inversely correlated in some conditions, there is no direct evidence to prove their interaction. Understanding the functional crosstalk between NKs in mediated downstream signaling and cellular responses may elucidate the roles of each receptor in pathophysiology.


Effects of MAT1-2 Spore Ratios on Fruiting Body Formation and Degeneration in the Heterothallic Fungus Cordyceps militaris.

  • Tao Xuan Vu‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2023‎

The medicinal mushroom Cordyceps militaris is widely exploited in traditional medicine and nutraceuticals in Asian countries. However, fruiting body production in C. militaris is facing degeneration through cultivation batches, and the molecular mechanism of this phenomenon remains unclear. This study showed that fruiting body formation in three different C. militaris strains, namely G12, B12, and HQ1, severely declined after three successive culturing generations using the spore isolation method. PCR analyses revealed that these strains exist as heterokaryons and possess both the mating-type loci, MAT1-1 and MAT1-2. Further, monokaryotic isolates carrying MAT1-1 or MAT1-2 were successfully separated from the fruiting bodies of all three heterokaryotic strains. A spore combination of the MAT1-1 monokaryotic isolate and the MAT1-2 monokaryotic isolate promoted fruiting body formation, while the single monokaryotic isolates could not do that themselves. Notably, we found that changes in ratios of the MAT1-2 spores strongly influenced fruiting body formation in these strains. When the ratios of the MAT1-2 spores increased to more than 15 times compared to the MAT1-1 spores, the fruiting body formation decreased sharply. In contrast, when MAT1-1 spores were increased proportionally, fruiting body formation was only slightly reduced. Our study also proposes a new solution to mitigate the degeneration in the heterokaryotic C. militaris strains caused by successive culturing generations.


Lactobacillus sakei MJM60958 as a Potential Probiotic Alleviated Non-Alcoholic Fatty Liver Disease in Mice Fed a High-Fat Diet by Modulating Lipid Metabolism, Inflammation, and Gut Microbiota.

  • Huong Thi Nguyen‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Non-alcoholic fatty liver disease (NAFLD) is a common liver disease with a rapidly increasing number of cases worldwide. This study aimed to evaluate the effects of Lactobacillus sakei MJM60958 (MJM60958) on NAFLD in vitro and in vivo. In in vitro tests, MJM60958 significantly inhibited lipid accumulation by 46.79% in HepG2 cells stimulated with oleic acid and cholesterol (OA-C). Moreover, MJM60958 showed safe and probiotic characteristics in vitro. In the animal study, MJM60958 administration in a high-fat diet-induced NAFLD mouse model significantly reduced body weight and liver weight, and controlled aspartate aminotransferase (ALT), aspartate transaminase (AST), triglyceride (TG), urea nitrogen (BUN), and uric acid (UA) levels in the blood, which are features of NAFLD. Further, treatment with MJM60958 also reduced steatosis scores in liver tissues, serum leptin and interleukin, and increased serum adiponectin content. Moreover, administration of MJM60958 resulted in a significantly decreased expression of some genes and proteins which are related to lipid accumulation, such as fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and sterol regulatory element-binding protein 1 (SREBP-1), and also upregulated genes and protein expression of lipid oxidation such as peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1a (CPT1A). Administration of MJM60958 increased the relative abundance of specific microbial taxa such as Verrucomicrobia, which are abundant in non-NAFLD mice, and reduced Firmicutes, which are a major group in NAFLD mice. MJM60958 affected the modulation of gut microbiota and altered the strain profile of short-chain fatty acids (SCFAs) production in the cecum by reduced lactic acid and enhanced acetic acid production. Overall, MJM60958 showed potential as a probiotic that can prevent and treat NAFLD.


The prevalence of anxiety and related factors among primary and secondary school teachers in Hanoi, Vietnam, during the COVID-19 pandemic in 2020.

  • Thuy Thi Thu Tran‎ et al.
  • PLOS global public health‎
  • 2024‎

The working conditions for teachers in Vietnam were characterized by increased workload and pressure, burdening teachers' well-being. The study aims to investigate anxiety prevalence and identify some related factors among primary and secondary school teachers in Hanoi after the first COVID-19 outbreak in 2020. This paper analyzed data of 481 teachers working at ten primary and secondary schools in Hanoi city. Anxiety was measured using the anxiety component of the Depression, Anxiety, and Stress scale 42 items. Multivariable logistics regression was performed to examine anxiety-related factors using SPSS 20.0 at a significant level p less than 0.05. The prevalence of anxiety symptoms was 42.4% and similar between primary and secondary school teachers. More secondary teachers reported moderate to severe anxiety symptoms than primary teachers did (31.6% and 27.7%). Primary school teachers who felt discomfort with their supervisor's assessment, high responsibility for student safety, and ever thinking of leaving their current job were more likely to report anxiety symptoms (OR (95%CI) = 2.8 (1.2-6.5), 3.6 (1.0-12.8), and 2.6 (1.3-5.4), respectively). Meanwhile, the discomfort of caring for many students or problematic students, repetitive work, and disagreement with coworkers were risk factors of anxiety among secondary school teachers (OR (95%CI) = 2.6 (1.2-5.8), 3.2 (1.1-9.2), 3.4 (1.3-8.8), and 3.7 (1.1-12.6), respectively). In conclusion, the prevalence of teachers with anxiety symptoms is on the rise, caused by the characteristics of the job and professional relationships. Tailored support for teachers in different grades is necessary to improve and prevent teachers' anxiety.


Verticillium dahliae VdPBP1 Transcription Factor Is Required for Hyphal Growth, Virulence, and Microsclerotia Formation.

  • Huong Thi Nguyen‎ et al.
  • Microorganisms‎
  • 2024‎

Verticillium dahliae, a fungal pathogen that affects more than 200 plant species, including tomatoes, requires specific proteins for its early steps in plant infection. One such crucial protein, VdPBP1, exhibits high expression in the presence of tomato roots. Its 313-amino acid C-terminal section restores adhesion in nonadhesive Saccharomyces cerevisiae strains. To uncover its role, we employed a combination of bioinformatics, genetics, and morphological analyses. Our findings underscore the importance of VdPBP1 in fungal growth and pathogenesis. Bioinformatic analysis revealed that the VdPBP1 gene consists of four exons and three introns, encoding a 952-codon reading frame. The protein features a 9aaTAD domain, LsmAD, and PAB1 DNA-binding sites, as well as potential nuclear localization and transmembrane helix signals. Notably, the deletion of a 1.1 kb fragment at the gene's third end impedes microsclerotia formation and reduces pathogenicity. Mutants exhibit reduced growth and slower aerial mycelial development compared to the wild type. The VdPBP1 deletion strain does not induce disease symptoms in tomato plants. Furthermore, VdPBP1 deletion correlates with downregulated microsclerotia formation-related genes, and promoter analysis reveals regulatory elements, including sites for Rfx1, Mig1, and Ste12 proteins. Understanding the regulation and target genes of VdPBP1 holds promise for managing Verticillium wilt disease and related fungal pathogens.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: