Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

A Sox2-Sox9 signalling axis maintains human breast luminal progenitor and breast cancer stem cells.

  • Giacomo Domenici‎ et al.
  • Oncogene‎
  • 2019‎

Increased cancer stem cell content during development of resistance to tamoxifen in breast cancer is driven by multiple signals, including Sox2-dependent activation of Wnt signalling. Here, we show that Sox2 increases and estrogen reduces the expression of the transcription factor Sox9. Gain and loss of function assays indicate that Sox9 is implicated in the maintenance of human breast luminal progenitor cells. CRISPR/Cas knockout of Sox9 reduces growth of tamoxifen-resistant breast tumours in vivo. Mechanistically, Sox9 acts downstream of Sox2 to control luminal progenitor cell content and is required for expression of the cancer stem cell marker ALDH1A3 and Wnt signalling activity. Sox9 is elevated in breast cancer patients after endocrine therapy failure. This new regulatory axis highlights the relevance of SOX family transcription factors as potential therapeutic targets in breast cancer.


hTERT promoter activity identifies osteosarcoma cells with increased EMT characteristics.

  • Ling Yu‎ et al.
  • Oncology letters‎
  • 2014‎

Epithelial-mesenchymal transition (EMT) is a critical step in order for epithelial-derived malignancies to metastasize, however, its role in mesenchymal-derived tumors, i.e., osteosarcoma, remains unclear. Cancer stem cells (CSCs) are enriched with cells that undergo EMT. The activity of telomerase is maintained in normal stem cells and a number of malignant tumors. The current study observed the heterogeneity of telomerase activity among individual osteosarcoma cells. We hypothesized that telomerase-positive (TELpos) cells are enriched for stem cell-like and EMT properties. A human telomerase reverse transcriptase (hTERT) promoter-reporter was applied to assess the telomerase activity of individual MG63 osteosarcoma cells and sort them into TELpos and telomerase-negative (TELneg) subpopulations. It was found that the TELpos cells exhibited an enhanced ability to form sarcospheres in vitro. In addition, TELpos cells exhibited a higher expression of vimentin, accompanied by an increased long/short axis ratio. A panel of EMT-related genes was evaluated by quantitative PCR and western blot analysis, and were found to be significantly upregulated in TELpos cells. Next, the in vitro migration capacity was examined by Transwell assay, which confirmed that TELpos cells are more prone to migration (2.6 fold). The results of the present study support the concept that EMT also applies to mesenchymal-derived osteosarcoma and draws a connection between telomerase and EMT characteristics.


Microenvironmental IL1β promotes breast cancer metastatic colonisation in the bone via activation of Wnt signalling.

  • Rachel Eyre‎ et al.
  • Nature communications‎
  • 2019‎

Dissemination of tumour cells to the bone marrow is an early event in breast cancer, however cells may lie dormant for many years before bone metastases develop. Treatment for bone metastases is not curative, therefore new adjuvant therapies which prevent the colonisation of disseminated cells into metastatic lesions are required. There is evidence that cancer stem cells (CSCs) within breast tumours are capable of metastasis, but the mechanism by which these colonise bone is unknown. Here, we establish that bone marrow-derived IL1β stimulates breast cancer cell colonisation in the bone by inducing intracellular NFkB and CREB signalling in breast cancer cells, leading to autocrine Wnt signalling and CSC colony formation. Importantly, we show that inhibition of this pathway prevents both CSC colony formation in the bone environment, and bone metastasis. These findings establish that targeting IL1β-NFKB/CREB-Wnt signalling should be considered for adjuvant therapy to prevent breast cancer bone metastasis.


Tailored Functionalized Magnetic Nanoparticles to Target Breast Cancer Cells Including Cancer Stem-Like Cells.

  • Ana Lazaro-Carrillo‎ et al.
  • Cancers‎
  • 2020‎

Nanotechnology-based approaches hold substantial potential to avoid chemoresistance and minimize side effects. In this work, we have used biocompatible iron oxide magnetic nanoparticles (MNPs) called MF66 and functionalized with the antineoplastic drug doxorubicin (DOX) against MDA-MB-231 cells. Electrostatically functionalized MNPs showed effective uptake and DOX linked to MNPs was more efficiently retained inside the cells than free DOX, leading to cell inactivation by mitotic catastrophe, senescence and apoptosis. Both effects, uptake and cytotoxicity, were demonstrated by different assays and videomicroscopy techniques. Likewise, covalently functionalized MNPs using three different linkers-disulfide (DOX-S-S-Pyr, called MF66-S-S-DOX), imine (DOX-I-Mal, called MF66-I-DOX) or both (DOX-I-S-S-Pyr, called MF66-S-S-I-DOX)-were also analysed. The highest cell death was detected using a linker sensitive to both pH and reducing environment (DOX-I-S-S-Pyr). The greatest success of this study was to detect also their activity against breast cancer stem-like cells (CSC) from MDA-MB-231 and primary breast cancer cells derived from a patient with a similar genetic profile (triple-negative breast cancer). In summary, these nanoformulations are promising tools as therapeutic agent vehicles, due to their ability to produce efficient internalization, drug delivery, and cancer cell inactivation, even in cancer stem-like cells (CSCs) from patients.


Novel recombinant R-spondin1 promotes hair regeneration by targeting the Wnt/β-catenin signaling pathway.

  • Yijun Chen‎ et al.
  • Acta biochimica et biophysica Sinica‎
  • 2023‎

Roof plate-specific spondin 1 (R-spondin1, RSPO1) is a Wnt/β-catenin signaling pathway activator that binds with Wnt ligands to stimulate the Wnt/β-catenin signaling pathway, which is key to hair regeneration. However, it is not clear whether recombinant RSPO1 (rRSPO1) affects hair regeneration. Here, we treat C57BL/6 male mice with rRSPO1 and investigate the expression of the Wnt/β-catenin signaling pathway and the activation of hair follicle stem cells in the dorsal skin. The mouse skin color score and hair-covered area are determined to describe hair growth, and the skin samples are subjected to H&E staining, western blot analysis and immunofluorescence staining to evaluate hair follicle development and the expressions of Wnt/β-catenin signaling pathway-related proteins. We find that rRSPO1 activates mouse hair follicle stem cells (mHFSCs) and accelerates hair regeneration. rRSPO1 increases the hair-covered area, the number of hair follicles, and the hair follicle diameter and length. Moreover, rRSPO1 enhances the activity of Wnt/β-catenin signaling pathway-related proteins and the expressions of HFSC markers, as well as mHFSC viability. These results indicate that subcutaneous injection of rRSPO1 can improve hair follicle development by activating the Wnt/β-catenin signaling pathway, thereby promoting hair regeneration. This study demonstrates that rRSPO1 has the potential to treat hair loss by activating the Wnt/β-catenin signaling pathway.


Reprogramming of Amino Acid Transporters to Support Aspartate and Glutamate Dependency Sustains Endocrine Resistance in Breast Cancer.

  • Marina Bacci‎ et al.
  • Cell reports‎
  • 2019‎

Endocrine therapy (ET) is the standard of care for estrogen receptor-positive (ER+) breast cancers. Despite its efficacy, ∼40% of women relapse with ET-resistant (ETR) disease. A global transcription analysis in ETR cells reveals a downregulation of the neutral and basic amino acid transporter SLC6A14 governed by enhanced miR-23b-3p expression, resulting in impaired amino acid metabolism. This altered amino acid metabolism in ETR cells is supported by the activation of autophagy and the enhanced import of acidic amino acids (aspartate and glutamate) mediated by the SLC1A2 transporter. The clinical significance of these findings is validated by multiple orthogonal approaches in a large cohort of ET-treated patients, in patient-derived xenografts, and in in vivo experiments. Targeting these amino acid metabolic dependencies resensitizes ETR cells to therapy and impairs the aggressive features of ETR cells, offering predictive biomarkers and potential targetable pathways to be exploited to combat or delay ETR in ER+ breast cancers.


Sox2 promotes tamoxifen resistance in breast cancer cells.

  • Marco Piva‎ et al.
  • EMBO molecular medicine‎
  • 2014‎

Development of resistance to therapy continues to be a serious clinical problem in breast cancer management. Cancer stem/progenitor cells have been shown to play roles in resistance to chemo‐ and radiotherapy. Here, we examined their role in the development of resistance to the oestrogen receptor antagonist tamoxifen. Tamoxifen‐resistant cells were enriched for stem/progenitors and expressed high levels of the stem cell marker Sox2. Silencing of the SOX2 gene reduced the size of the stem/progenitor cell population and restored sensitivity to tamoxifen. Conversely, ectopic expression of Sox2 reduced tamoxifen sensitivity in vitro and in vivo. Gene expression profiling revealed activation of the Wnt signalling pathway in Sox2‐expressing cells, and inhibition of Wnt signalling sensitized resistant cells to tamoxifen. Examination of patient tumours indicated that Sox2 levels are higher in patients after endocrine therapy failure, and also in the primary tumours of these patients, compared to those of responders. Together, these results suggest that development of tamoxifen resistance is driven by Sox2‐dependent activation of Wnt signalling in cancer stem/progenitor cells.


Leptin as a mediator of tumor-stromal interactions promotes breast cancer stem cell activity.

  • Cinzia Giordano‎ et al.
  • Oncotarget‎
  • 2016‎

Breast cancer stem cells (BCSCs) play crucial roles in tumor initiation, metastasis and therapeutic resistance. A strict dependency between BCSCs and stromal cell components of tumor microenvironment exists. Thus, novel therapeutic strategies aimed to target the crosstalk between activated microenvironment and BCSCs have the potential to improve clinical outcome. Here, we investigated how leptin, as a mediator of tumor-stromal interactions, may affect BCSC activity using patient-derived samples (n = 16) and breast cancer cell lines, and determined the potential benefit of targeting leptin signaling in these model systems. Conditioned media (CM) from cancer-associated fibroblasts and breast adipocytes significantly increased mammosphere formation in breast cancer cells and depletion of leptin from CM completely abrogated this effect. Mammosphere cultures exhibited increased leptin receptor (OBR) expression and leptin exposure enhanced mammosphere formation. Microarray analyses revealed a similar expression profile of genes involved in stem cell biology among mammospheres treated with CM and leptin. Interestingly, leptin increased mammosphere formation in metastatic breast cancers and expression of OBR as well as HSP90, a target of leptin signaling, were directly correlated with mammosphere formation in metastatic samples (r = 0.68/p = 0.05; r = 0.71/p = 0.036, respectively). Kaplan-Meier survival curves indicated that OBR and HSP90 expression were associated with reduced overall survival in breast cancer patients (HR = 1.9/p = 0.022; HR = 2.2/p = 0.00017, respectively). Furthermore, blocking leptin signaling by using a full leptin receptor antagonist significantly reduced mammosphere formation in breast cancer cell lines and patient-derived samples. Our results suggest that leptin/leptin receptor signaling may represent a potential therapeutic target that can block the stromal-tumor interactions driving BCSC-mediated disease progression.


Increased Expression of Interleukin-1 Receptor Characterizes Anti-estrogen-Resistant ALDH+ Breast Cancer Stem Cells.

  • Aida Sarmiento-Castro‎ et al.
  • Stem cell reports‎
  • 2020‎

Estrogen-receptor-positive breast tumors are treated with anti-estrogen (AE) therapies but frequently develop resistance. Cancer stem cells (CSCs) with high aldehyde dehydrogenase activity (ALDH+ cells) are enriched following AE treatment. Here, we show that the interleukin-1β (IL-1β) signaling pathway is activated in ALDH+ cells, and data from single cells reveals that AE treatment selects for IL-1 receptor (IL1R1)-expressing ALDH+ cells. Importantly, CSC activity is reduced by an IL1R1 inhibitor in AE-resistant models. Moreover, IL1R1 expression is increased in the tumors of patients treated with AE therapy and predicts treatment failure. Single-cell gene expression analysis revealed that at least two subpopulations exist within the ALDH+ population, one proliferative and one quiescent. Following AE therapy the quiescent population is expanded, which suggests CSC dormancy as an adaptive strategy that facilitates treatment resistance. Targeting of ALDH+IL1R1+ cells merits testing as a strategy to combat AE resistance in patients with residual disease.


Cisplatin selects for stem-like cells in osteosarcoma by activating Notch signaling.

  • Ling Yu‎ et al.
  • Oncotarget‎
  • 2016‎

Notch signaling regulates normal stem cells and is also thought to regulate cancer stem cells (CSCs). Recent data indicate that Notch signaling plays a role in the development and progression of osteosarcoma, however the regulation of Notch in chemo-resistant stem-like cells has not yet been fully elucidated. In this study we generated cisplatin-resistant osteosarcoma cells by treating them with sub-lethal dose of cisplatin, sufficient to induce DNA damage responses. Cisplatin-resistant osteosarcoma cells exhibited lower proliferation, enhanced spheroid formation and more mesenchymal characteristics than cisplatin-sensitive cells, were enriched for Stro-1+/CD117+ cells and showed increased expression of stem cell-related genes. A similar effect was observed in vivo, and in addition in vivo tumorigenicity was enhanced during serial transplantation. Using several publicly available datasets, we identified that Notch expression was closely associated with osteosarcoma stem cells and chemotherapy resistance. We confirmed that cisplatin-induced enrichment of osteosarcoma stem cells was mediated through Notch signaling in vitro, and immunohistochemistry showed that cleaved Notch1 (NICD1) positive cells were significantly increased in a relapsed xenograft which had received cisplatin treatment. Furthermore, pretreatment with a γ-secretase inhibitor (GSI) to prevent Notch signalling inhibited cisplatin-enriched osteosarcoma stem cell activity in vitro, including Stro-1+/CD117+ double positive cells and spheroid formation capacity. The Notch inhibitor DAPT also prevented tumor recurrence in resistant xenograft tumors. Overall, our results show that cisplatin induces the enrichment of osteosarcoma stem-like cells through Notch signaling, and targeted inactivation of Notch may be useful for the elimination of CSCs and overcoming drug resistance.


Estrogenicity of essential oils is not required to relieve symptoms of urogenital atrophy in breast cancer survivors.

  • Bruno M Simões‎ et al.
  • Therapeutic advances in medical oncology‎
  • 2018‎

Urogenital atrophy (UA) is a common treatment-limiting side effect of endocrine therapies. Topical estrogen is effective but systemic absorption may counter aromatase inhibitor efficacy. Numerous complementary approaches are marketed for use in UA without rigorous testing of their estrogenicity. We tested multiple essential oils in cancer cell growth and estrogen reporter assays in vitro and assessed clinical outcomes with the essential oil pessaries (EOPs) in breast cancer survivors with UA.


PAK4 regulates stemness and progression in endocrine resistant ER-positive metastatic breast cancer.

  • Angélica Santiago-Gómez‎ et al.
  • Cancer letters‎
  • 2019‎

Despite the effectiveness of endocrine therapies to treat estrogen receptor-positive (ER+) breast tumours, two thirds of patients will eventually relapse due to de novo or acquired resistance to these agents. Cancer Stem-like Cells (CSCs), a rare cell population within the tumour, accumulate after anti-estrogen treatments and are likely to contribute to their failure. Here we studied the role of p21-activated kinase 4 (PAK4) as a promising target to overcome endocrine resistance and disease progression in ER + breast cancers. PAK4 predicts for resistance to tamoxifen and poor prognosis in 2 independent cohorts of ER + tumours. We observed that PAK4 strongly correlates with CSC activity in metastatic patient-derived samples irrespective of breast cancer subtype. However, PAK4-driven mammosphere-forming CSC activity increases alongside progression only in ER + metastatic samples. PAK4 activity increases in ER + models of acquired resistance to endocrine therapies. Targeting PAK4 with either CRT PAKi, a small molecule inhibitor of PAK4, or with specific siRNAs abrogates CSC activity/self-renewal in clinical samples and endocrine-resistant cells. Together, our findings establish that PAK4 regulates stemness during disease progression and that its inhibition reverses endocrine resistance in ER + breast cancers.


MicroRNA-629-5p promotes osteosarcoma proliferation and migration by targeting caveolin 1.

  • Chunsheng Gao‎ et al.
  • Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas‎
  • 2021‎

Osteosarcoma is a highly malignant tumor that occurs in the bone. Previous studies have shown that multiple microRNAs (miRNAs) regulate the development of osteosarcoma. This study aimed to explore the role of miR-629-5p and its target gene, caveolin 1 (CAV1), in osteosarcoma development. To analyze the expression of miR-629-5p and CAV1 mRNA in osteosarcoma tissues and cell lines, qRT-PCR analysis was performed. Dual-luciferase reporter experiments were subsequently performed to validate the relationship between CAV1 and miR-629-5p. CCK8 assay was used to measure osteosarcoma cell proliferation, and wound-healing assay was performed to study their migratory phenotype. Our findings revealed that miR-629-5p was overexpressed in osteosarcoma tissues and cells, and thereby enhanced cell proliferation and migration. Further, we validated that miR-629-5p targets CAV1 mRNA directly. CAV1 expression, which was negatively correlated with miR-629-5p expression, was found to be downregulated in osteosarcoma tissue samples. Moreover, our data showed that an increase in CAV1 level led to a decline in osteosarcoma cell proliferation and migration, which could be rescued by miR-629-5p upregulation. Overall, our study confirmed that miR-629-5p promoted osteosarcoma proliferation and migration by directly inhibiting CAV1.


FKBPL and its peptide derivatives inhibit endocrine therapy resistant cancer stem cells and breast cancer metastasis by downregulating DLL4 and Notch4.

  • Lana McClements‎ et al.
  • BMC cancer‎
  • 2019‎

Optimising breast cancer treatment remains a challenge. Resistance to therapy is a major problem in both ER- and ER+ breast cancer. Tumour recurrence after chemotherapy and/or targeted therapy leads to more aggressive tumours with enhanced metastatic ability. Self-renewing cancer stem cells (CSCs) have been implicated in treatment resistance, recurrence and the development of metastatic disease.


Targeting STAT3 signaling using stabilised sulforaphane (SFX-01) inhibits endocrine resistant stem-like cells in ER-positive breast cancer.

  • Bruno M Simões‎ et al.
  • Oncogene‎
  • 2020‎

Estrogen receptor (ER) positive breast cancer is frequently sensitive to endocrine therapy. Multiple mechanisms of endocrine therapy resistance have been identified, including cancer stem-like cell (CSC) activity. Here we investigate SFX-01, a stabilised formulation of sulforaphane (SFN), for its effects on breast CSC activity in ER+ preclinical models. SFX-01 reduced mammosphere formation efficiency (MFE) of ER+ primary and metastatic patient samples. Both tamoxifen and fulvestrant increased MFE and aldehyde dehydrogenase (ALDH) activity of patient-derived xenograft (PDX) tumors, which was reversed by combination with SFX-01. SFX-01 significantly reduced tumor-initiating cell frequency in secondary transplants and reduced the formation of spontaneous lung micrometastases by PDX tumors in mice. Mechanistically, we establish that both tamoxifen and fulvestrant induce STAT3 phosphorylation. SFX-01 suppressed phospho-STAT3 and SFN directly bound STAT3 in patient and PDX samples. Analysis of ALDH+ cells from endocrine-resistant patient samples revealed activation of STAT3 target genes MUC1 and OSMR, which were inhibited by SFX-01 in patient samples. Increased expression of these genes after 3 months' endocrine treatment of ER+ patients (n = 68) predicted poor prognosis. Our data establish the importance of STAT3 signaling in CSC-mediated resistance to endocrine therapy and the potential of SFX-01 for improving clinical outcomes in ER+ breast cancer.


Time-resolved single-cell analysis of Brca1 associated mammary tumourigenesis reveals aberrant differentiation of luminal progenitors.

  • Karsten Bach‎ et al.
  • Nature communications‎
  • 2021‎

It is unclear how genetic aberrations impact the state of nascent tumour cells and their microenvironment. BRCA1 driven triple negative breast cancer (TNBC) has been shown to arise from luminal progenitors yet little is known about how BRCA1 loss-of-function (LOF) and concomitant mutations affect the luminal progenitor cell state. Here we demonstrate how time-resolved single-cell profiling of genetically engineered mouse models before tumour formation can address this challenge. We found that perturbing Brca1/p53 in luminal progenitors induces aberrant alveolar differentiation pre-malignancy accompanied by pro-tumourigenic changes in the immune compartment. Unlike alveolar differentiation during gestation, this process is cell autonomous and characterised by the dysregulation of transcription factors driving alveologenesis. Based on our data we propose a model where Brca1/p53 LOF inadvertently promotes a differentiation program hardwired in luminal progenitors, highlighting the deterministic role of the cell-of-origin and offering a potential explanation for the tissue specificity of BRCA1 tumours.


Enrichment of human osteosarcoma stem cells based on hTERT transcriptional activity.

  • Ling Yu‎ et al.
  • Oncotarget‎
  • 2013‎

Telomerase is crucial for the maintenance of stem/progenitor cells in adult tissues and is detected in most malignant cancers, including osteosarcoma. However, the relationship between telomerase expression and cancer stem cells remains unknown. We observed that sphere-derived osteosarcoma cells had higher telomerase activity, indicating that telomerase activity might be enriched in osteosarcoma stem cells. We sorted subpopulations with high or low telomerase activity (TEL) using hTERT transcriptional promoter-induced green fluorescent protein (GFP). The TELpos cells showed an increased sphere and tumor propagating capacity compared to TELneg cells, and enhanced stem cell-like properties such as invasiveness, metastatic activity and resistance to chemotherapeutic agents both in vitro and in vivo. Furthermore, the telomerase inhibitor MST312 prevented tumorigenic potential both in vitro and in vivo, preferentially targeting the TELpos cells. These data support telomerase inhibition as a potential targeted therapy for osteosarcoma stem-like cells.


Oestrogen increases the activity of oestrogen receptor negative breast cancer stem cells through paracrine EGFR and Notch signalling.

  • Hannah Harrison‎ et al.
  • Breast cancer research : BCR‎
  • 2013‎

Although oestrogen is essential for the development of the normal breast, adult mammary stem cells are known to be oestrogen receptor alpha (ER) negative and rely on paracrine signals in the mammary epithelium for mediation of developmental cues. However, little is known about how systemic oestrogen regulates breast cancer stem cell (CSC) activity.


A protective role by interleukin-17F in colon tumorigenesis.

  • Zan Tong‎ et al.
  • PloS one‎
  • 2012‎

Interleukin-17F (IL-17F), produced by Th17 cells and other immune cells, is a member of IL-17 cytokine family with highest homology to IL-17A. IL-17F has been shown to have multiple functions in inflammatory responses. While IL-17A plays important roles in cancer development, the function of IL-17F in tumorigenesis has not yet been elucidated. In the current study, we found that IL-17F is expressed in normal human colonic epithelial cells, but this expression is greatly decreased in colon cancer tissues. To examine the roles of IL-17F in colon cancer, we have used IL-17F over-expressing colon cancer cell lines and IL-17F-deficient mice. Our data showed decreased tumor growth of IL-17F-transfected HCT116 cells comparing to mock transfectants when transplanted in nude mice. Conversely, there were increased colonic tumor numbers and tumor areas in Il-17f(-/-) mice than those from wild-type controls after colon cancer induction. These results indicate that IL-17F plays an inhibitory role in colon tumorigenesis in vivo. In IL-17F over-expressing tumors, there was no significant change in leukocyte infiltration; instead, we found decreased VEGF levels and CD31(+) cells. While the VEGF levels were increased in the colon tissues of Il-17f(-/-) mice with colon cancer. Together, our findings demonstrate a protective role for IL-17F in colon cancer development, possibly via inhibiting tumor angiogenesis.


Patient-derived Mammosphere and Xenograft Tumour Initiation Correlates with Progression to Metastasis.

  • Rachel Eyre‎ et al.
  • Journal of mammary gland biology and neoplasia‎
  • 2016‎

Breast cancer specific mortality results from tumour cell dissemination and metastatic colonisation. Identification of the cells and processes responsible for metastasis will enable better prevention and control of metastatic disease, thus reducing relapse and mortality. To better understand these processes, we prospectively collected 307 patient-derived breast cancer samples (n = 195 early breast cancers (EBC) and n = 112 metastatic samples (MBC)). We assessed colony-forming activity in vitro by growing isolated cells in both primary (formation) and secondary (self-renewal) mammosphere culture, and tumour initiating activity in vivo through subcutaneous transplantation of fragments or cells into mice. Metastatic samples formed primary mammosphere colonies significantly more frequently than early breast cancers and had significantly higher primary mammosphere colony formation efficiency (0.9 % vs. 0.6 %; p < 0.0001). Tumour initiation in vivo was significantly higher in metastatic than early breast cancer samples (63 % vs. 38 %, p = 0.04). Of 144 breast cancer samples implanted in vivo, we established 20 stable patient-derived xenograft (PDX) models at passage 2 or greater. Lung metastases were detected in mice from 14 PDX models. Mammosphere colony formation in vitro significantly correlated with the ability of a tumour to metastasise to the lungs in vivo (p = 0.05), but not with subcutaneous tumour initiation. In summary, the breast cancer stem cell activities of colony formation and tumour initiation are increased in metastatic compared to early samples, and predict metastasis in vivo. These results suggest that breast stem cell activity will predict for poor outcome tumours, and therapy targeting this activity will improve outcomes for patients with metastatic disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: