Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 722 papers

The Happy Life Club™ study protocol: a cluster randomised controlled trial of a type 2 diabetes health coach intervention.

  • Colette Browning‎ et al.
  • BMC public health‎
  • 2011‎

The Happy Life Club™ is an intervention that utilises health coaches trained in behavioural change and motivational interviewing techniques to assist with the management of type 2 diabetes mellitus (T2DM) in primary care settings in China. Health coaches will support participants to improve modifiable risk factors and adhere to effective self-management treatments associated with T2DM.


Proteomic analysis of rat hypothalamus revealed the role of ubiquitin-proteasome system in the genesis of DR or DIO.

  • Qi-ming Wang‎ et al.
  • Neurochemical research‎
  • 2011‎

Obesity has become a global epidemic, contributing to the increasing burdens of cardiovascular disease and type 2 diabetes. However, the precise molecular mechanisms of obesity remain poorly elucidated. The hypothalamus plays a major part in regulating energy homeostasis by integrating all kinds of nutritional signals. This study investigated the hypothalamus protein profile in diet-induced obese (DIO) and diet-resistant (DR) rats using two dimensional gel electrophoresis (2-DE) combined with MALDI-TOF/TOF-MS analysis. Twenty-two proteins were identified in the hypothalamus of DIO or DR rats. These include metabolic enzymes, antioxidant proteins, proteasome related proteins, and signaling proteins, some of which are related to AMP-activated protein kinase (AMPK) signaling or mitochondrial respiration. Among these proteins, in comparison with the normal-diet group, Ubiquitin was significantly decreased in DR rats but not changed in DIO rats, while Ubiquitin carboxyl-terminal esterase L1 (UCHL-1) was decreased in DIO rats but not changed in DR rats. The expression level of Ubiquitin and UCHL-1 were further validated using Western blot analysis. Our study reveals that Ubiquitin and UCHL-1 are obesity-related factors in the hypothalamus that may play an important role in the genesis of DR or DIO by interfering with the integrated signaling network that control energy balance and feeding.


Interactions among related genes of renin-angiotensin system associated with type 2 diabetes.

  • Jin-Kui Yang‎ et al.
  • Diabetes care‎
  • 2010‎

To explore the association between epistasis among related genes of the renin-angiotensin system (RAS) and type 2 diabetes.


Multiple Genetic Modifiers of Bilirubin Metabolism Involvement in Significant Neonatal Hyperbilirubinemia in Patients of Chinese Descent.

  • Hui Yang‎ et al.
  • PloS one‎
  • 2015‎

The potential for genetic variation to modulate neonatal hyperbilirubinemia risk is increasingly being recognized. A case-control study was designed to assess comprehensive contributions of the multiple genetic modifiers of bilirubin metabolism on significant neonatal hyperbilirubinemia in Chinese descendents. Eleven common mutations and polymorphisms across five bilirubin metabolism genes, namely those encoding UGT1A1, HMOX1, BLVRA, SLCO1B1 and SLCO1B3, were determined using the high resolution melt (HRM) assay or PCR-capillary electrophoresis analysis. A total of 129 hyperbilirubinemic infants and 108 control subjects were evaluated. Breastfeeding and the presence of the minor A allele of rs4148323 (UGTA*6) were correlated with an increased risk of hyperbilirubinemia (OR=2.17, P=0.02 for breastfeeding; OR=9.776, P=0.000 for UGTA*6 homozygote; OR=3.151, P=0.000 for UGTA*6 heterozygote); whereas, increasing gestational age and the presence of -TA7 repeat variant of UGT1A1 decreased the risk (OR=0.721, P=0.003 for gestational age; OR=0.313, P=0.002 for heterozygote TA6/TA7). In addition, the SLCO1B1 and SLCO1B3 polymorphisms also contributed to an increased risk of hyperbilirubinemia. This detailed analysis revealed the impact of multiple genetic modifiers on neonatal hyperbilirubinemia. This may support the use of genetic tests for clinical risk assessment. Furthermore, the established HRM assay can serve as an effective method for large-scale investigation.


The coupling interface and pore domain codetermine the single-channel activity of the α7 nicotinic receptor.

  • Hongxia Yan‎ et al.
  • Neuropharmacology‎
  • 2015‎

Ligand-gated ion channels play a role in mediating fast synaptic transmission for communication between neurons. However, the structural basis for the functional coupling of the binding and pore domains, resulting in channel opening, remains a topic of intense investigation. Here, a series of α7 nicotinic receptor mutants were constructed for expression in cultured mammalian cells, and their single-channel properties were examined using the patch-clamp technique combined with radio ligand binding and the fluorescence staining technique. We demonstrated that the replacement of the four pore-lining residues in the channel domain of the α7 nicotinic receptor with the hydrophilic residue serine prolongs the open-channel lifetime, although the conductance of these mutants decreases. At the coupling interface between the extracellular and transmembrane domains, when the VRW residues in the Cys-loop were substituted with the corresponding residues (i.e., IYN) in the 5-HT3A receptor, the single-channel activity elicited by acetylcholine is impaired. This effect occurred despite the expression of the mutant receptors on the cell surface and despite the fact that the apparent Kd values were much lower than those of the wild-type α7 receptor. When we further lowered the channel-gating barrier of this chimera to enhance the open-channel probability, the loss of function was rescued. Overall, we explored the microscopic mechanisms underlying the interplay between the channel domains and the coupling interface that affect the channel activity, and we generated an allosteric gating model for the α7 receptor. This model shows that the gating machinery and coupling assembly codetermine the single-channel gating kinetics. These results likely apply to all channels in the Cys-loop receptor family.


A pathway-centric survey of somatic mutations in Chinese patients with colorectal carcinomas.

  • Chao Ling‎ et al.
  • PloS one‎
  • 2015‎

Previous genetic studies on colorectal carcinomas (CRC) have identified multiple somatic mutations in four candidate pathways (TGF-β, Wnt, P53 and RTK-RAS pathways) on populations of European ancestry. However, it is under-studied whether other populations harbor different sets of hot-spot somatic mutations in these pathways and other oncogenes. In this study, to evaluate the mutational spectrum of novel somatic mutations, we assessed 41 pairs of tumor-stroma tissues from Chinese patients with CRC, including 29 colon carcinomas and 12 rectal carcinomas. We designed Illumina Custom Amplicon panel to target 43 genes, including genes in the four candidate pathways, as well as several known oncogenes for other cancers. Candidate mutations were validated by Sanger sequencing, and we further used SIFT and PolyPhen-2 to assess potentially functional mutations. We discovered 3 new somatic mutations in gene APC, TCF7L2, and PIK3CA that had never been reported in the COSMIC or NCI-60 databases. Additionally, we confirmed 6 known somatic mutations in gene SMAD4, APC, FBXW7, BRAF and PTEN in Chinese CRC patients. While most were previously reported in CRC, one mutation in PTEN was reported only in malignant endometrium cancer. Our study confirmed the existence of known somatic mutations in the four candidate pathways for CRC in Chinese patients. We also discovered a number of novel somatic mutations in these pathways, which may have implications for the pathogenesis of CRC.


NADPH oxidases mediate a cellular "memory" of angiotensin II stress in hypertensive cardiac hypertrophy.

  • Hong-Xia Wang‎ et al.
  • Free radical biology & medicine‎
  • 2013‎

A long-term "memory" of hyperglycemic stress, even when glycemia is normalized, has been previously reported in diabetes. In this report we propose a similar hypothesis that exposure to continuous high angiotensin II (Ang II) results in a cellular "memory" in isolated cardiomyocytes and in the heart tissues, and we investigate the role of NADPH oxidases in this phenomenon. Continuous high Ang II for 3 days markedly increased cardiomyocyte size, TUNEL-positive apoptotic cardiomyocytes, expression of inflammatory cytokines, and oxidative stress. These deleterious effects were also observed in the memory condition (high Ang II for 2 days followed by normal medium for 1 day). Furthermore, in a mouse model, Ang II infusion for 3 weeks significantly increased cardiac hypertrophy, apoptosis, inflammation, and ROS generation but decreased cardiac function compared with control mice, and similar effects were also observed in mice in the memory condition. Importantly, blockade of NADPH oxidase using apocynin diminished the induction of high Ang II stress markers in isolated cardiomyocytes and in the mouse heart. These effects were associated with inhibition of NADPH oxidase-mediated AKT/mTOR/S6K and ERK signaling pathways. The present results demonstrate the hypothesis that exposure to continuous high Ang II results in a hypertensive cellular memory that remains, even when cells or mice are switched back to normal Ang II. This phenomenon was associated with NADPH oxidase-mediated oxidative stress.


Histone deacetylase 1 and p300 can directly associate with chromatin and compete for binding in a mutually exclusive manner.

  • Xuehui Li‎ et al.
  • PloS one‎
  • 2014‎

Lysine acetyltransferases (KATs) and histone deacetylases (HDACs) are important epigenetic modifiers and dynamically cycled on active gene promoters to regulate transcription. Although HDACs are recruited to gene promoters and DNA hypersensitive sites through interactions with DNA binding factors, HDAC activities are also found globally in intergenic regions where DNA binding factors are not present. It is suggested that HDACs are recruited to those regions through other distinct, yet undefined mechanisms. Here we show that HDACs can be directly recruited to chromatin in the absence of other factors through direct interactions with both DNA and core histone subunits. HDACs interact with DNA in a non-sequence specific manner. HDAC1 and p300 directly bind to the overlapping regions of the histone H3 tail and compete for histone binding. Previously we show that p300 can acetylate HDAC1 to attenuate deacetylase activity. Here we have further mapped two distinct regions of HDAC1 that interact with p300. Interestingly, these regions of HDAC1 also associate with histone H3. More importantly, p300 and HDAC1 compete for chromatin binding both in vitro and in vivo. Therefore, the mutually exclusive associations of HDAC1/p300, p300/histone, and HDAC1/histone on chromatin contribute to the dynamic regulation of histone acetylation by balancing HDAC or KAT activity present at histones to reorganize chromatin structure and regulate transcription.


Methyllycaconitine alleviates amyloid-β peptides-induced cytotoxicity in SH-SY5Y cells.

  • XiaoLei Zheng‎ et al.
  • PloS one‎
  • 2014‎

Alzheimer's disease (AD) is a chronic progressive neurodegenerative disorder. As the most common form of dementia, it affects more than 35 million people worldwide and is increasing. Excessive extracellular deposition of amyloid-β peptide (Aβ) is a pathologic feature of AD. Accumulating evidence indicates that macroautophagy is involved in the pathogenesis of AD, but its exact role is still unclear. Although major findings on the molecular mechanisms have been reported, there are still no effective treatments to prevent, halt, or reverse Alzheimer's disease. In this study, we investigated whether Aβ25-35 could trigger an autophagy process and inhibit the growth of SH-SY5Y cells. Furthermore, we examined the effect of methyllycaconitine (MLA) on the cytotoxity of Aβ25-35. MLA had a protective effect against cytotoxity of Aβ, which may be related to its inhibition of Aβ-induced autophagy and the involvement of the mammalian target of rapamycin pathway. Moreover, MLA had a good safety profile. MLA treatment may be a promising therapeutic tool for AD.


Oridonin attenuates Aβ1-42-induced neuroinflammation and inhibits NF-κB pathway.

  • Sulei Wang‎ et al.
  • PloS one‎
  • 2014‎

Neuroinflammation induced by beta-amyloid (Aβ) plays a critical role in the pathogenesis of Alzheimer's disease (AD), and inhibiting Aβ-induced neuroinflammation serves as a potential strategy for the treatment of AD. Oridonin (Ori), a compound of Rabdosia rubescens, has been shown to exert anti-inflammatory effects. In this study, we demonstrated that Ori inhibited glial activation and decreased the release of inflammatory cytokines in the hippocampus of Aβ1-42-induced AD mice. In addition, Ori inhibited the NF-κB pathway and Aβ1-42-induced apoptosis. Furthermore, Ori could attenuate memory deficits in Aβ1-42-induced AD mice. In conclusion, our study demonstrated that Ori inhibited the neuroinflammation and attenuated memory deficits induced by Aβ1-42, suggesting that Ori might be a promising candidate for AD treatment.


GAP-Seq: a method for identification of DNA palindromes.

  • Hui Yang‎ et al.
  • BMC genomics‎
  • 2014‎

Closely spaced long inverted repeats, also known as DNA palindromes, can undergo intrastrand annealing to form DNA hairpins. The ability to form these hairpins results in genome instability, difficulties in maintaining clones in Escherichia coli and major problems for most DNA sequencing approaches. Because of their role in genomic instability and gene amplification in some human cancers, it is important to develop systematic approaches to detect and characterize DNA palindromes.


Downregulation of CD47 and CD200 in patients with focal cortical dysplasia type IIb and tuberous sclerosis complex.

  • Fei-Ji Sun‎ et al.
  • Journal of neuroinflammation‎
  • 2016‎

Focal cortical dysplasia type IIb (FCD IIb) and tuberous sclerosis complex (TSC) are well-recognized causes of chronic intractable epilepsy in children. Accumulating evidence suggests that activation of the microglia/macrophage and concomitant inflammatory response in FCD IIb and TSC may contribute to the initiation and recurrence of seizures. The membrane glycoproteins CD47 and CD200, which are highly expressed in neurons and other cells, mediate inhibitory signals through their receptors, signal regulatory protein α (SIRP-α) and CD200R, respectively, in microglia/macrophages. We investigate the levels and expression pattern of CD47/SIRP-α and CD200/CD200R in surgically resected brain tissues from patients with FCD IIb and TSC, and the potential effect of soluble human CD47 Fc and CD200 Fc on the inhibition of several proinflammatory cytokines associated with FCD IIb and TSC in living epileptogenic brain slices in vitro. The level of interleukin-4 (IL-4), a modulator of CD200, was also investigated.


Effects of polysaccharide from mycelia of Ganoderma lucidum on intestinal barrier functions of rats.

  • Mingliang Jin‎ et al.
  • International journal of biological macromolecules‎
  • 2017‎

The intestinal mucosal barriers play essential roles not only in the digestion and absorption of nutrients, but also the innate defense against most intestinal pathogens. In the present study, polysaccharide from the mycelia of Ganoderma lucidum was given via oral administration to rats (100mg/kg body weight, 21days) to investigate its effects on intestinal barrier functions, including the mechanical barrier, immunological barrier and biological barrier function. It was found that the polysaccharide administration could significantly up-regulate the expression of occludin, nuclear factor-κB p65 (NF-κB p65) and secretory immunoglobulin A (SIgA) in ileum, markedly improve the levels of interferon-γ (IFN-γ), interleukin-2 (IL-2), and IL-4, and decrease the level of diamine oxidase (DAO) in serum. Meanwhile, rats from the polysaccharide group showed significant higher microbiota richness in cecum as reflected by the Chao 1 index compared with the control group. Moreover, the polysaccharide decreased the Firmicutes-to-Bacteroidetes ratio. Our results indicated that the polysaccharide from the mycelia of G. lucidum might be used as functional agent to regulate the intestinal barrier functions.


iCAGES: integrated CAncer GEnome Score for comprehensively prioritizing driver genes in personal cancer genomes.

  • Chengliang Dong‎ et al.
  • Genome medicine‎
  • 2016‎

Cancer results from the acquisition of somatic driver mutations. Several computational tools can predict driver genes from population-scale genomic data, but tools for analyzing personal cancer genomes are underdeveloped. Here we developed iCAGES, a novel statistical framework that infers driver variants by integrating contributions from coding, non-coding, and structural variants, identifies driver genes by combining genomic information and prior biological knowledge, then generates prioritized drug treatment. Analysis on The Cancer Genome Atlas (TCGA) data showed that iCAGES predicts whether patients respond to drug treatment (P = 0.006 by Fisher's exact test) and long-term survival (P = 0.003 from Cox regression). iCAGES is available at http://icages.wglab.org .


PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease.

  • Hui Yang‎ et al.
  • Cell‎
  • 2016‎

C2c1 is a newly identified guide RNA-mediated type V-B CRISPR-Cas endonuclease that site-specifically targets and cleaves both strands of target DNA. We have determined crystal structures of Alicyclobacillus acidoterrestris C2c1 (AacC2c1) bound to sgRNA as a binary complex and to target DNAs as ternary complexes, thereby capturing catalytically competent conformations of AacC2c1 with both target and non-target DNA strands independently positioned within a single RuvC catalytic pocket. Moreover, C2c1-mediated cleavage results in a staggered seven-nucleotide break of target DNA. crRNA adopts a pre-ordered five-nucleotide A-form seed sequence in the binary complex, with release of an inserted tryptophan, facilitating zippering up of 20-bp guide RNA:target DNA heteroduplex on ternary complex formation. Notably, the PAM-interacting cleft adopts a "locked" conformation on ternary complex formation. Structural comparison of C2c1 ternary complexes with their Cas9 and Cpf1 counterparts highlights the diverse mechanisms adopted by these distinct CRISPR-Cas systems, thereby broadening and enhancing their applicability as genome editing tools.


Evaluating the Contribution of Gut Microbiota to the Variation of Porcine Fatness with the Cecum and Fecal Samples.

  • Maozhang He‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Microbial community in gastrointestinal tract participates in the development of the obesity as well as quite a few metabolic diseases in human. However, there are few studies about the relationship between gut microbiota and porcine fatness. Here, we used high-throughput sequencing to perform 16S rRNA gene analysis in 256 cecum luminal samples from Erhualian pigs and 244 stools from Bamaxiang pigs, and adopted a two-part model statistical method to evaluate the association of gut microbes with porcine fatness. As the results, we identified a total of 6 and 108 operational taxonomic units (OTUs), and 9 and 10 bacterial taxa which showed significant associations with fatness traits in the stool and cecum samples, respectively. Cross-validation analysis indicated that gut microbiome showed the largest effect on abdominal adipose by explaining 2.73% phenotypic variance of abdominal fat weight. Significantly more fatness-associated OTUs were identified in the cecum samples than that in the stools, suggesting that cecum luminal samples were better used for identification of fatness-associated microbes than stools. The fatness-associated OTUs were mainly annotated to Lachnospiraceae, Ruminococcaceae, Prevotella, Treponema, and Bacteroides. These microbes have been reported to produce short-chain fatty acids by fermenting dietary indigested polysaccharide and pectin. The short-chain fatty acids can regulate host body energy homeostasis, protect host from inflammation and inhibit fat mass development. Our findings suggested that the gut microbiome may be an important factor modulating fatness in pigs.


New differentially expressed genes and differential DNA methylation underlying refractory epilepsy.

  • Xi Liu‎ et al.
  • Oncotarget‎
  • 2016‎

Epigenetics underlying refractory epilepsy is poorly understood, especially in patients without distinctive genetic alterations. DNA methylation may affect gene expression in epilepsy without affecting DNA sequences. Herein, we analyzed genome-wide DNA methylation and gene expression in brain tissues of 10 patients with refractory epilepsy using methylated DNA immunoprecipitation linked with sequencing and mRNA Sequencing. Diverse distribution of differentially methylated genes was found in X chromosome, while differentially methylated genes appeared rarely in Y chromosome. 62 differentially expressed genes, such as MMP19, AZGP1, DES, and LGR6 were correlated with refractory epilepsy for the first time. Although general trends of differentially enriched gene ontology terms and Kyoto Encyclopedia of Genes and Genome pathways in this study are consistent with previous researches, differences also exist in many specific gene ontology terms and Kyoto Encyclopedia of Genes and Genome pathways. These findings provide a new genome-wide profiling of DNA methylation and gene expression in brain tissues of patients with refractory epilepsy, which may provide a basis for further study on the etiology and mechanisms of refractory epilepsy.


Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system.

  • Albert W Cheng‎ et al.
  • Cell research‎
  • 2013‎

Technologies allowing for specific regulation of endogenous genes are valuable for the study of gene functions and have great potential in therapeutics. We created the CRISPR-on system, a two-component transcriptional activator consisting of a nuclease-dead Cas9 (dCas9) protein fused with a transcriptional activation domain and single guide RNAs (sgRNAs) with complementary sequence to gene promoters. We demonstrate that CRISPR-on can efficiently activate exogenous reporter genes in both human and mouse cells in a tunable manner. In addition, we show that robust reporter gene activation in vivo can be achieved by injecting the system components into mouse zygotes. Furthermore, we show that CRISPR-on can activate the endogenous IL1RN, SOX2, and OCT4 genes. The most efficient gene activation was achieved by clusters of 3-4 sgRNAs binding to the proximal promoters, suggesting their synergistic action in gene induction. Significantly, when sgRNAs targeting multiple genes were simultaneously introduced into cells, robust multiplexed endogenous gene activation was achieved. Genome-wide expression profiling demonstrated high specificity of the system.


Human umbilical cord mesenchymal stem cell-derived neuron-like cells rescue memory deficits and reduce amyloid-beta deposition in an AβPP/PS1 transgenic mouse model.

  • Hui Yang‎ et al.
  • Stem cell research & therapy‎
  • 2013‎

Cell therapy is a potential therapeutic approach for neurodegenerative disorders, such as Alzheimer disease (AD). Neuronal differentiation of stem cells before transplantation is a promising procedure for cell therapy. However, the therapeutic impact and mechanisms of action of neuron-like cells differentiated from human umbilical cord mesenchymal stem cells in AD have not been determined.


USF1 and hSET1A mediated epigenetic modifications regulate lineage differentiation and HoxB4 transcription.

  • Changwang Deng‎ et al.
  • PLoS genetics‎
  • 2013‎

The interplay between polycomb and trithorax complexes has been implicated in embryonic stem cell (ESC) self-renewal and differentiation. It has been shown recently that WRD5 and Dpy-30, specific components of the SET1/MLL protein complexes, play important roles during ESC self-renewal and differentiation of neural lineages. However, not much is known about how and where specific trithorax complexes are targeted to genes involved in self-renewal or lineage-specification. Here, we report that the recruitment of the hSET1A histone H3K4 methyltransferase (HMT) complex by transcription factor USF1 is required for mesoderm specification and lineage differentiation. In undifferentiated ESCs, USF1 maintains hematopoietic stem/progenitor cell (HS/PC) associated bivalent chromatin domains and differentiation potential. Furthermore, USF1 directed recruitment of the hSET1A complex to the HoxB4 promoter governs the transcriptional activation of HoxB4 gene and regulates the formation of early hematopoietic cell populations. Disruption of USF or hSET1A function by overexpression of a dominant-negative AUSF1 mutant or by RNA-interference-mediated knockdown, respectively, led to reduced expression of mesoderm markers and inhibition of lineage differentiation. We show that USF1 and hSET1A together regulate H3K4me3 modifications and transcription preinitiation complex assembly at the hematopoietic-associated HoxB4 gene during differentiation. Finally, ectopic expression of USF1 in ESCs promotes mesoderm differentiation and enforces the endothelial-to-hematopoietic transition by inducing hematopoietic-associated transcription factors, HoxB4 and TAL1. Taken together, our findings reveal that the guided-recruitment of the hSET1A histone methyltransferase complex and its H3K4 methyltransferase activity by transcription regulator USF1 safeguards hematopoietic transcription programs and enhances mesoderm/hematopoietic differentiation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: