Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation.

  • Tadashi Yokosuka‎ et al.
  • Immunity‎
  • 2010‎

T cell activation is positively and negatively regulated by a pair of costimulatory receptors, CD28 and CTLA-4, respectively. Because these receptors share common ligands, CD80 and CD86, the expression and behavior of CTLA-4 is critical for T cell costimulation regulation. However, in vivo blocking of CD28-mediated costimulation by CTLA-4 and its mechanisms still remain elusive. Here, we demonstrate the dynamic behavior of CTLA-4 in its real-time competition with CD28 at the central-supramolecular activation cluster (cSMAC), resulting in the dislocalization of protein kinase C-θ and CARMA1 scaffolding protein. CTLA-4 translocation to the T cell receptor microclusters and the cSMAC is tightly regulated by its ectodomain size, and its accumulation at the cSMAC is required for its inhibitory function. The CTLA-4-mediated suppression was demonstrated by the in vitro anergy induction in regulatory T cells constitutively expressing CTLA-4. These results show the dynamic mechanism of CTLA-4-mediated T cell suppression at the cSMAC.


mTORC1 and mTORC2 Kinase Signaling and Glucose Metabolism Drive Follicular Helper T Cell Differentiation.

  • Hu Zeng‎ et al.
  • Immunity‎
  • 2016‎

Follicular helper T (Tfh) cells are crucial for germinal center (GC) formation and humoral adaptive immunity. Mechanisms underlying Tfh cell differentiation in peripheral and mucosal lymphoid organs are incompletely understood. We report here that mTOR kinase complexes 1 and 2 (mTORC1 and mTORC2) are essential for Tfh cell differentiation and GC reaction under steady state and after antigen immunization and viral infection. Loss of mTORC1 and mTORC2 in T cells exerted distinct effects on Tfh cell signature gene expression, whereas increased mTOR activity promoted Tfh responses. Deficiency of mTORC2 impaired CD4(+) T cell accumulation and immunoglobulin A production and aberrantly induced the transcription factor Foxo1. Mechanistically, the costimulatory molecule ICOS activated mTORC1 and mTORC2 to drive glycolysis and lipogenesis, and glucose transporter 1-mediated glucose metabolism promoted Tfh cell responses. Altogether, mTOR acts as a central node in Tfh cells by linking immune signals to anabolic metabolism and transcriptional activity.


Tissue-specific 5-hydroxymethylcytosine landscape of the human genome.

  • Bo He‎ et al.
  • Nature communications‎
  • 2021‎

5-Hydroxymethylcytosine (5hmC) is an important epigenetic mark that regulates gene expression. Charting the landscape of 5hmC in human tissues is fundamental to understanding its regulatory functions. Here, we systematically profiled the whole-genome 5hmC landscape at single-base resolution for 19 types of human tissues. We found that 5hmC preferentially decorates gene bodies and outperforms gene body 5mC in reflecting gene expression. Approximately one-third of 5hmC peaks are tissue-specific differentially-hydroxymethylated regions (tsDhMRs), which are deposited in regions that potentially regulate the expression of nearby tissue-specific functional genes. In addition, tsDhMRs are enriched with tissue-specific transcription factors and may rewire tissue-specific gene expression networks. Moreover, tsDhMRs are associated with single-nucleotide polymorphisms identified by genome-wide association studies and are linked to tissue-specific phenotypes and diseases. Collectively, our results show the tissue-specific 5hmC landscape of the human genome and demonstrate that 5hmC serves as a fundamental regulatory element affecting tissue-specific gene expression programs and functions.


Uncoupling of macrophage inflammation from self-renewal modulates host recovery from respiratory viral infection.

  • Bibo Zhu‎ et al.
  • Immunity‎
  • 2021‎

Tissue macrophages self-renew during homeostasis and produce inflammatory mediators upon microbial infection. We examined the relationship between proliferative and inflammatory properties of tissue macrophages by defining the impact of the Wnt/β-catenin pathway, a central regulator of self-renewal, in alveolar macrophages (AMs). Activation of β-catenin by Wnt ligand inhibited AM proliferation and stemness, but promoted inflammatory activity. In a murine influenza viral pneumonia model, β-catenin-mediated AM inflammatory activity promoted acute host morbidity; in contrast, AM proliferation enabled repopulation of reparative AMs and tissue recovery following viral clearance. Mechanistically, Wnt treatment promoted β-catenin-HIF-1α interaction and glycolysis-dependent inflammation while suppressing mitochondrial metabolism and thereby, AM proliferation. Differential HIF-1α activities distinguished proliferative and inflammatory AMs in vivo. This β-catenin-HIF-1α axis was conserved in human AMs and enhanced HIF-1α expression associated with macrophage inflammation in COVID-19 patients. Thus, inflammatory and reparative activities of lung macrophages are regulated by β-catenin-HIF-1α signaling, with implications for the treatment of severe respiratory diseases.


A Novel Humanized PD-1/PD-L1 Mouse Model Permits Direct Comparison of Antitumor Immunity Generated by Food and Drug Administration-Approved PD-1 and PD-L1 Inhibitors.

  • Whitney Barham‎ et al.
  • ImmunoHorizons‎
  • 2023‎

Seven different anti-PD-1 and PD-L1 mAbs are now widely used in the United States to treat a variety of cancer types, but no clinical trials have compared them directly. Furthermore, because many of these Abs do not cross-react between mouse and human proteins, no preclinical models exist in which to consider these types of questions. Thus, we produced humanized PD-1 and PD-L1 mice in which the extracellular domains of both mouse PD-1 and PD-L1 were replaced with the corresponding human sequences. Using this new model, we sought to compare the strength of the immune response generated by Food and Drug Administration-approved Abs. To do this, we performed an in vivo T cell priming assay in which anti-PD-1/L1 therapies were given at the time of T cell priming against surrogate tumor Ag (OVA), followed by subsequent B16-OVA tumor challenge. Surprisingly, both control and Ab-treated mice formed an equally robust OVA-specific T cell response at the time of priming. Despite this, anti-PD-1/L1-treated mice exhibited significantly better tumor rejection versus controls, with avelumab generating the best protection. To determine what could be mediating this, we identified the increased production of CX3CR1+PD-1+CD8+ cytotoxic T cells in the avelumab-treated mice, the same phenotype of effector T cells known to increase in clinical responders to PD-1/L1 therapy. Thus, our model permits the direct comparison of Food and Drug Administration-approved anti-PD-1/L1 mAbs and further correlates successful tumor rejection with the level of CX3CR1+PD-1+CD8 + T cells, making this model a critical tool for optimizing and better utilizing anti-PD-1/L1 therapeutics.


Nuclear export of the NF-κB inhibitor IκBα is required for proper B cell and secondary lymphoid tissue formation.

  • Shelly M Wuerzberger-Davis‎ et al.
  • Immunity‎
  • 2011‎

The N-terminal nuclear export sequence (NES) of inhibitor of nuclear factor kappa B (NF-κB) alpha (IκBα) promotes NF-κB export from the cell nucleus to the cytoplasm, but the physiological role of this export regulation remains unknown. Here we report the derivation and analysis of genetically targeted mice harboring a germline mutation in IκBα NES. Mature B cells in the mutant mice displayed nuclear accumulation of inactive IκBα complexes containing a NF-κB family member, cRel, causing their spatial separation from the cytoplasmic IκB kinase. This resulted in severe reductions in constitutive and canonical NF-κB activities, synthesis of p100 and RelB NF-κB members, noncanonical NF-κB activity, NF-κB target gene induction, and proliferation and survival responses in B cells. Consequently, mice displayed defective B cell maturation, antibody production, and formation of secondary lymphoid organs and tissues. Thus, IκBα nuclear export is essential to maintain constitutive, canonical, and noncanonical NF-κB activation potentials in mature B cells in vivo.


Bone marrow adipose tissue-derived stem cell factor mediates metabolic regulation of hematopoiesis.

  • Zengdi Zhang‎ et al.
  • Haematologica‎
  • 2019‎

Hematopoiesis is dynamically regulated by metabolic cues in homeostatic and stressed conditions; however, the cellular and molecular mechanisms mediating the metabolic sensing and regulation remain largely obscure. Bone marrow adipose tissue remodels in various metabolic conditions and has been recently proposed as a niche for hematopoietic stem cells after irradiation. Here, we investigated the role of marrow adipose tissue-derived hematopoietic cytokine stem cell factor in unperturbed hematopoiesis by selectively ablating the Kitl gene from adipocytes and bone marrow stroma cells using Adipoq-Cre and Osx1-Cre, respectively. We found that both Adipoq-Kitl knockout (KO) and Osx1-Kitl KO mice diminished hematopoietic stem and progenitor cells and myeloid progenitors in the bone marrow and developed macrocytic anemia at the steady-state. The composition and differentiation of hematopoietic progenitor cells in the bone marrow dynamically responded to metabolic challenges including high fat diet, β3-adrenergic activation, thermoneutrality, and aging. However, such responses, particularly within the myeloid compartment, were largely impaired in Adipoq-Kitl KO mice. Our data demonstrate that marrow adipose tissue provides stem cell factor essentially for hematopoiesis both at the steady state and upon metabolic stresses.


Mevalonate metabolism-dependent protein geranylgeranylation regulates thymocyte egress.

  • Xingrong Du‎ et al.
  • The Journal of experimental medicine‎
  • 2020‎

Thymocyte egress is a critical determinant of T cell homeostasis and adaptive immunity. Despite the roles of G protein-coupled receptors in thymocyte emigration, the downstream signaling mechanism remains poorly defined. Here, we report the discrete roles for the two branches of mevalonate metabolism-fueled protein prenylation pathway in thymocyte egress and immune homeostasis. The protein geranylgeranyltransferase Pggt1b is up-regulated in single-positive thymocytes, and loss of Pggt1b leads to marked defects in thymocyte egress and T cell lymphopenia in peripheral lymphoid organs in vivo. Mechanistically, Pggt1b bridges sphingosine-1-phosphate and chemokine-induced migratory signals with the activation of Cdc42 and Pak signaling and mevalonate-dependent thymocyte trafficking. In contrast, the farnesyltransferase Fntb, which mediates a biochemically similar process of protein farnesylation, is dispensable for thymocyte egress but contributes to peripheral T cell homeostasis. Collectively, our studies establish context-dependent effects of protein prenylation and unique roles of geranylgeranylation in thymic egress and highlight that the interplay between cellular metabolism and posttranslational modification underlies immune homeostasis.


DNA repair glycosylase hNEIL1 triages damaged bases via competing interaction modes.

  • Menghao Liu‎ et al.
  • Nature communications‎
  • 2021‎

DNA glycosylases must distinguish the sparse damaged sites from the vast expanse of normal DNA bases. However, our understanding of the nature of nucleobase interrogation is still limited. Here, we show that hNEIL1 (human endonuclease VIII-like 1) captures base lesions via two competing states of interaction: an activated state that commits catalysis and base excision repair, and a quarantine state that temporarily separates and protects the flipped base via auto-inhibition. The relative dominance of the two states depends on key residues of hNEIL1 and chemical properties (e.g. aromaticity and hydrophilicity) of flipped bases. Such a DNA repair mechanism allows hNEIL1 to recognize a broad spectrum of DNA damage while keeps potential gratuitous repair in check. We further reveal the molecular basis of hNEIL1 activity regulation mediated by post-transcriptional modifications and provide an example of how exquisite structural dynamics serves for orchestrated enzyme functions.


Histone deacetylase 3 represses cholesterol efflux during CD4+ T-cell activation.

  • Drew Wilfahrt‎ et al.
  • eLife‎
  • 2021‎

After antigenic activation, quiescent naive CD4+ T cells alter their metabolism to proliferate. This metabolic shift increases production of nucleotides, amino acids, fatty acids, and sterols. Here, we show that histone deacetylase 3 (HDAC3) is critical for activation of murine peripheral CD4+ T cells. HDAC3-deficient CD4+ T cells failed to proliferate and blast after in vitro TCR/CD28 stimulation. Upon T-cell activation, genes involved in cholesterol biosynthesis are upregulated while genes that promote cholesterol efflux are repressed. HDAC3-deficient CD4+ T cells had reduced levels of cellular cholesterol both before and after activation. HDAC3-deficient cells upregulate cholesterol synthesis appropriately after activation, but fail to repress cholesterol efflux; notably, they overexpress cholesterol efflux transporters ABCA1 and ABCG1. Repression of these genes is the primary function for HDAC3 in peripheral CD4+ T cells, as addition of exogenous cholesterol restored proliferative capacity. Collectively, these findings demonstrate HDAC3 is essential during CD4+ T-cell activation to repress cholesterol efflux.


Protein Prenylation Drives Discrete Signaling Programs for the Differentiation and Maintenance of Effector Treg Cells.

  • Wei Su‎ et al.
  • Cell metabolism‎
  • 2020‎

Effector regulatory T (eTreg) cells are essential for immune tolerance and depend upon T cell receptor (TCR) signals for generation. The immunometabolic signaling mechanisms that promote the differentiation and maintenance of eTreg cells remain unclear. Here, we show that isoprenoid-dependent posttranslational lipid modifications dictate eTreg cell accumulation and function by intersecting with TCR-induced intracellular signaling. We find that isoprenoids are essential for activated Treg cell suppressive activity, and Treg cell-specific deletion of the respective farnesylation- and geranylgeranylation-promoting enzymes Fntb or Pggt1b leads to the development of fatal autoimmunity, associated with reduced eTreg cell accumulation. Mechanistically, Fntb promotes eTreg cell maintenance by regulating mTORC1 activity and ICOS expression. In contrast, Pggt1b acts as a rheostat of TCR-dependent transcriptional programming and Rac-mediated signaling for establishment of eTreg cell differentiation and immune tolerance. Therefore, our results identify bidirectional metabolic signaling, specifically between immunoreceptor signaling and metabolism-mediated posttranslational lipid modifications, for the differentiation and maintenance of eTreg cells.


Identification of Potential Metabolites Mediating Bird's Selective Feeding on Prunus mira Flowers.

  • Shanshan Zhang‎ et al.
  • BioMed research international‎
  • 2019‎

In peach orchards, birds severely damage flowers during blossom season, decreasing the fruit yield potential. However, the wild peach species Prunus mira shows intraspecific variations of bird damage, indicating that some of the wild trees have developed strategies to avert bird foraging. Motivated by this observation, we formulated the present study to identify the potential flower metabolites mediating the bird's selective feeding behavior in P. mira flowers. The birds' preferred (FG) and avoided (BFT) flowers were collected from wild P. mira trees at three different locations, and their metabolite contents were detected, quantified, and compared. The widely-targeted metabolomics approach was employed to detect a diverse set of 603 compounds, predominantly, organic acids, amino acid derivatives, nucleotide and its derivatives, and flavones. By quantitatively comparing the metabolite contents between FG and BFT, three candidate metabolites, including Eriodictiol 6-C-hexoside 8-C-hexoside-O-hexoside, Luteolin O-hexosyl-O-hexosyl-O-hexoside, and Salvianolic acid A, were differentially accumulated and showed the same pattern across the three sampling locations. Distinctly, Salvianolic acid A was abundantly accumulated in FG but absent in BFT, implying that it may be the potential metabolite attracting birds in some P. mira flowers. Overall, this study sheds light on the diversity of the floral metabolome in P. mira and suggests that the bird's selective feeding behavior may be mediated by variations in floral metabolite contents.


PP2A catalytic subunit alpha is critically required for CD8+ T cell homeostasis and anti-bacterial responses.

  • Xian Zhou‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

While the functions of tyrosine phosphatases in T cell biology have been extensively studied, our knowledge on the contribution of serine/threonine phosphatases in T cells remains poor. Protein phosphatase 2A (PP2A) is one of the most abundantly expressed serine/threonine phosphatases. It is important in thymocyte development and CD4+ T cell differentiation. Utilizing a genetic model in which its catalytic subunit alpha isoform (PP2A Cα) is deleted in T cells, we investigated its contribution to CD8+ T cell homeostasis and effector functions. Our results demonstrate that T cell intrinsic PP2A Cα is critically required for CD8+ T cell homeostasis in secondary lymphoid organs and intestinal mucosal site. Importantly, PP2A Cα deficient CD8+ T cells exhibit reduced proliferation and survival. CD8+ T cell anti-bacterial response is strictly dependent on PP2A Cα. Expression of Bcl2 transgene rescues CD8+ T cell homeostasis in spleens, but not in intestinal mucosal site, nor does it restore the defective anti-bacterial responses. Finally, proteomics and phosphoproteomics analyses reveal potential targets dependent on PP2A Cα, including mTORC1 and AKT. Thus, PP2A Cα is a key modulator of CD8+ T cell homeostasis and effector functions.


mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function.

  • Hu Zeng‎ et al.
  • Nature‎
  • 2013‎

The mechanistic target of rapamycin (mTOR) pathway integrates diverse environmental inputs, including immune signals and metabolic cues, to direct T-cell fate decisions. The activation of mTOR, which is the catalytic subunit of the mTORC1 and mTORC2 complexes, delivers an obligatory signal for the proper activation and differentiation of effector CD4(+) T cells, whereas in the regulatory T-cell (T(reg)) compartment, the Akt-mTOR axis is widely acknowledged as a crucial negative regulator of T(reg)-cell de novo differentiation and population expansion. However, whether mTOR signalling affects the homeostasis and function of T(reg) cells remains largely unexplored. Here we show that mTORC1 signalling is a pivotal positive determinant of T(reg)-cell function in mice. T(reg) cells have elevated steady-state mTORC1 activity compared to naive T cells. Signals through the T-cell antigen receptor (TCR) and interleukin-2 (IL-2) provide major inputs for mTORC1 activation, which in turn programs the suppressive function of T(reg) cells. Disruption of mTORC1 through Treg-specific deletion of the essential component raptor leads to a profound loss of T(reg)-cell suppressive activity in vivo and the development of a fatal early onset inflammatory disorder. Mechanistically, raptor/mTORC1 signalling in T(reg) cells promotes cholesterol and lipid metabolism, with the mevalonate pathway particularly important for coordinating T(reg)-cell proliferation and upregulation of the suppressive molecules CTLA4 and ICOS to establish Treg-cell functional competency. By contrast, mTORC1 does not directly affect the expression of Foxp3 or anti- and pro-inflammatory cytokines in T(reg) cells, suggesting a non-conventional mechanism for T(reg)-cell functional regulation. Finally, we provide evidence that mTORC1 maintains T(reg)-cell function partly through inhibiting the mTORC2 pathway. Our results demonstrate that mTORC1 acts as a fundamental 'rheostat' in T(reg) cells to link immunological signals from TCR and IL-2 to lipogenic pathways and functional fitness, and highlight a central role of metabolic programming of T(reg)-cell suppressive activity in immune homeostasis and tolerance.


Homeostasis and transitional activation of regulatory T cells require c-Myc.

  • Jordy Saravia‎ et al.
  • Science advances‎
  • 2020‎

Regulatory T cell (Treg) activation and expansion occur during neonatal life and inflammation to establish immunosuppression, yet the mechanisms governing these events are incompletely understood. We report that the transcriptional regulator c-Myc (Myc) controls immune homeostasis through regulation of Treg accumulation and functional activation. Myc activity is enriched in Tregs generated during neonatal life and responding to inflammation. Myc-deficient Tregs show defects in accumulation and ability to transition to an activated state. Consequently, loss of Myc in Tregs results in an early-onset autoimmune disorder accompanied by uncontrolled effector CD4+ and CD8+ T cell responses. Mechanistically, Myc regulates mitochondrial oxidative metabolism but is dispensable for fatty acid oxidation (FAO). Indeed, Treg-specific deletion of Cox10, which promotes oxidative phosphorylation, but not Cpt1a, the rate-limiting enzyme for FAO, results in impaired Treg function and maturation. Thus, Myc coordinates Treg accumulation, transitional activation, and metabolic programming to orchestrate immune homeostasis.


mTOR coordinates transcriptional programs and mitochondrial metabolism of activated Treg subsets to protect tissue homeostasis.

  • Nicole M Chapman‎ et al.
  • Nature communications‎
  • 2018‎

Regulatory T (Treg) cells derived from the thymus (tTreg) and periphery (pTreg) have central and distinct functions in immunosuppression, but mechanisms for the generation and activation of Treg subsets in vivo are unclear. Here, we show that mechanistic target of rapamycin (mTOR) unexpectedly supports the homeostasis and functional activation of tTreg and pTreg cells. mTOR signaling is crucial for programming activated Treg-cell function to protect immune tolerance and tissue homeostasis. Treg-specific deletion of mTOR drives spontaneous effector T-cell activation and inflammation in barrier tissues and is associated with reduction in both thymic-derived effector Treg (eTreg) and pTreg cells. Mechanistically, mTOR functions downstream of antigenic signals to drive IRF4 expression and mitochondrial metabolism, and accordingly, deletion of mitochondrial transcription factor A (Tfam) severely impairs Treg-cell suppressive function and eTreg-cell generation. Collectively, our results show that mTOR coordinates transcriptional and metabolic programs in activated Treg subsets to mediate tissue homeostasis.


Stearoyl-CoA Desaturase-Mediated Monounsaturated Fatty Acid Availability Supports Humoral Immunity.

  • Xian Zhou‎ et al.
  • Cell reports‎
  • 2021‎

Immune cells can metabolize glucose, amino acids, and fatty acids (FAs) to generate energy. The roles of different FA species and their impacts on humoral immunity remain poorly understood. Here, we report that proliferating B cells require monounsaturated FAs (MUFAs) to maintain mitochondrial metabolism and mTOR activity and to prevent excessive autophagy and endoplasmic reticulum (ER) stress. Furthermore, B cell-extrinsic stearoyl-CoA desaturase (SCD) activity generates MUFA to support early B cell development and germinal center (GC) formation in vivo during immunization and influenza infection. Thus, SCD-mediated MUFA production is critical for humoral immunity.


O-GlcNAc glycosylation orchestrates fate decision and niche function of bone marrow stromal progenitors.

  • Zengdi Zhang‎ et al.
  • eLife‎
  • 2023‎

In mammals, interactions between the bone marrow (BM) stroma and hematopoietic progenitors contribute to bone-BM homeostasis. Perinatal bone growth and ossification provide a microenvironment for the transition to definitive hematopoiesis; however, mechanisms and interactions orchestrating the development of skeletal and hematopoietic systems remain largely unknown. Here, we establish intracellular O-linked β-N-acetylglucosamine (O-GlcNAc) modification as a posttranslational switch that dictates the differentiation fate and niche function of early BM stromal cells (BMSCs). By modifying and activating RUNX2, O-GlcNAcylation promotes osteogenic differentiation of BMSCs and stromal IL-7 expression to support lymphopoiesis. In contrast, C/EBPβ-dependent marrow adipogenesis and expression of myelopoietic stem cell factor (SCF) is inhibited by O-GlcNAcylation. Ablating O-GlcNAc transferase (OGT) in BMSCs leads to impaired bone formation, increased marrow adiposity, as well as defective B-cell lymphopoiesis and myeloid overproduction in mice. Thus, the balance of osteogenic and adipogenic differentiation of BMSCs is determined by reciprocal O-GlcNAc regulation of transcription factors, which simultaneously shapes the hematopoietic niche.


Single-Cell 5-Formylcytosine Landscapes of Mammalian Early Embryos and ESCs at Single-Base Resolution.

  • Chenxu Zhu‎ et al.
  • Cell stem cell‎
  • 2017‎

Active DNA demethylation in mammals involves ten-eleven translocation (TET) family protein-mediated oxidation of 5-methylcytosine (5mC). However, base-resolution landscapes of 5-formylcytosine (5fC) (an oxidized derivative of 5mC) at the single-cell level remain unexplored. Here, we present "CLEVER-seq" (chemical-labeling-enabled C-to-T conversion sequencing), which is a single-cell, single-base resolution 5fC-sequencing technology, based on biocompatible, selective chemical labeling of 5fC and subsequent C-to-T conversion during amplification and sequencing. CLEVER-seq shows intrinsic 5fC heterogeneity in mouse early embryos, Epi stem cells (EpiSCs), and embryonic stem cells (ESCs). CLEVER-seq of mouse early embryos also reveals the highly patterned genomic distribution and parental-specific dynamics of 5fC during mouse early pre-implantation development. Integrated analysis demonstrates that promoter 5fC production precedes the expression upregulation of a clear set of developmentally and metabolically critical genes. Collectively, our work reveals the dynamics of active DNA demethylation during mouse pre-implantation development and provides an important resource for further functional studies of epigenetic reprogramming in single cells.


HNRNPH1 is required for rhabdomyosarcoma cell growth and survival.

  • Yanfeng Li‎ et al.
  • Oncogenesis‎
  • 2018‎

Rhabdomyosarcoma (RMS) is an aggressive and difficult to treat cancer characterized by a muscle-like phenotype. Although the average 5-y survival rate is 65% for newly diagnosed RMS, the treatment options for metastatic disease are limited in efficacy, with the 5-y survival rate plummeting to 30%. Heterogenous nuclear ribonucleoprotein H1 (HNRNPH1) is an RNA-binding protein that is highly expressed in many cancers, including RMS. To determine the role HNRNPH1 plays in RMS tumorigenesis, we investigated its expression and effect on growth in three cellular models of RMS: RD, RH30, and RH41 cells. Upon knockdown of HNRNPH1, growth of all cell lines was reduced, most likely through a combination of apoptosis and cell cycle arrest. We then recapitulated this finding by performing in vivo xenograft studies, in which knockdown of HNRNPH1 resulted in a reduction of tumor formation and growth. We used RNA sequencing to identify changes in gene expression after HNRNPH1 knockdown and found altered splicing of some oncogenes. Our data contribute to understanding the role of HNRNPH1 in RMS development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: