Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Monocytes-derived macrophages mediated stable expression of human brain-derived neurotrophic factor, a novel therapeutic strategy for neuroAIDS.

  • Jing Tong‎ et al.
  • PloS one‎
  • 2014‎

HIV-1 associated dementia remains a significant public health burden. Clinical and experimental research has shown that reduced levels of brain-derived neurotrophic factor (BDNF) may be a risk factor for neurological complications associated with HIV-1 infection. We are actively testing genetically modified macrophages for their possible use as the cell-based gene delivery vehicle for the central nervous system (CNS). It can be an advantage to use the natural homing/migratory properties of monocyte-derived macrophages to deliver potentially neuroprotective BDNF into the CNS, as a non-invasive manner. Lentiviral-mediated gene transfer of human (h)BDNF plasmid was constructed and characterized. Defective lentiviral stocks were generated by transient transfection of 293T cells with lentiviral transfer plasmid together with packaging and envelope plasmids. High titer lentiviral vector stocks were harvested and used to transduce human neuronal cell lines, primary cultures of human peripheral mononocyte-derived macrophages (hMDM) and murine myeloid monocyte-derived macrophages (mMDM). These transduced cells were tested for hBDNF expression, stability, and neuroprotective activity. The GenomeLab GeXP Genetic Analysis System was used to evaluate transduced cells for any adverse effects by assessing gene profiles of 24 reference genes. High titer vectors were prepared for efficient transduction of neuronal cell lines, hMDM, and mMDM. Stable secretion of high levels of hBDNF was detected in supernatants of transduced cells using western blot and ELISA. The conditioned media containing hBDNF were shown to be protective to neuronal and monocytic cell lines from TNF-α and HIV-1 Tat mediated cytotoxicity. Lentiviral vector-mediated gene transduction of hMDM and mMDM resulted in high-level, stable expression of the neuroprotective factorBDNF in vitro. These findings form the basis for future research on the potential use of BDNF as a novel therapy for neuroAIDS.


Physiological function and inflamed-brain migration of mouse monocyte-derived macrophages following cellular uptake of superparamagnetic iron oxide nanoparticles-Implication of macrophage-based drug delivery into the central nervous system.

  • Hsin-I Tong‎ et al.
  • International journal of pharmaceutics‎
  • 2016‎

This study was designed to use superparamagnetic iron oxide nanoparticles (SPIONs) as evaluating tools to study monocyte-derived macrophages (MDM)-mediated delivery of small molecular agents into the diseased brains. MDM were tested with different-configured SPIONs at selected concentrations for their impacts on carrier cells' physiological and migratory properties, which were found to depend largely on particle size, coating, and treatment concentrations. SHP30, a SPION of 30-nm core size with oleic acids plus amphiphilic polymer coating, was identified to have high cellular uptake efficiency and cause little cytotoxic effects on MDM. At lower incubation dose (25μg/mL), few alteration was observed in carrier cells' physiological and in vivo migratory functions, as tested in a lipopolysaccharide-induced acute neuroinflammation mouse model. Nevertheless, significant increase in monocyte-to-macrophage differentiation, and decrease in in vivo carrier MDM inflamed-brain homing ability were found in groups treated with a higher dose of SHP30at 100μg/mL. Overall, our results have identified MDM treatment at 25μg/mL SHP30 resulted in little functional changes, provided valuable parameters for using SPIONs as evaluating tools to study MDM-mediated therapeutics carriage and delivery, and supported the concepts of using monocytes-macrophages as cellular vehicles to transport small molecular agents to the brain.


Monocyte Trafficking, Engraftment, and Delivery of Nanoparticles and an Exogenous Gene into the Acutely Inflamed Brain Tissue - Evaluations on Monocyte-Based Delivery System for the Central Nervous System.

  • Hsin-I Tong‎ et al.
  • PloS one‎
  • 2016‎

The ability of monocytes and monocyte-derived macrophages (MDM) to travel towards chemotactic gradient, traverse tissue barriers, and accumulate precisely at diseased sites makes them attractive candidates as drug carriers and therapeutic gene delivery vehicles targeting the brain, where treatments are often hampered by the blockade of the blood brain barrier (BBB). This study was designed to fully establish an optimized cell-based delivery system using monocytes and MDM, by evaluating their homing efficiency, engraftment potential, as well as carriage and delivery ability to transport nano-scaled particles and exogenous genes into the brain, following the non-invasive intravenous (IV) cell adoptive transfer in an acute neuroinflammation mouse model induced by intracranial injection of Escherichia coli lipopolysaccharides. We demonstrated that freshly isolated monocytes had superior inflamed-brain homing ability over MDM cultured in the presence of macrophage colony stimulating factor. In addition, brain trafficking of IV infused monocytes was positively correlated with the number of adoptive transferred cells, and could be further enhanced by transient disruption of the BBB with IV administration of Mannitol, Bradykinin or Serotonin right before cell infusion. A small portion of transmigrated cells was detected to differentiate into IBA-1 positive cells with microglia morphology in the brain. Finally, with the use of superparamagnetic iron oxide nanoparticles SHP30, the ability of nanoscale agent-carriage monocytes to enter the inflamed brain region was validated. In addition, lentiviral vector DHIV-101 was used to introduce green fluorescent protein (GFP) gene into monocytes, and the exogenous GFP gene was detected in the brain at 48 hours following IV infusion of the transduced monocytes. All together, our study has set up the optimized conditions for the more-in-depth tests and development of monocyte-mediated delivery, and our data supported the notion to use monocytes as a non-invasive cell-based delivery system for the brain.


New approaches for enhanced detection of enteroviruses from Hawaiian environmental waters.

  • Christina Connell‎ et al.
  • PloS one‎
  • 2012‎

Health risks associated with sewage-contaminated recreational waters are of important public health concern. Reliable water monitoring systems are therefore crucial. Current recreational water quality criteria rely predominantly on the enumeration of bacterial indicators, while potentially dangerous viral pathogens often remain undetected. Human enteric viruses have been proposed as alternative indicators; however, their detection is often hindered by low viral concentrations present in the environment. Reported here are novel and effective laboratory protocols for viral concentration and highly sensitive and optimized RT-PCR for the efficient detection of enteroviruses, an important enteric virus subset, in Hawaiian environmental waters. Eighteen published enterovirus primer pairs were comparatively evaluated for detection sensitivity. The primer set exhibiting the lowest detection limit under optimized conditions, EQ-1/EQ-2, was validated in a field survey of 22 recreational bodies of water located around the island of Oahu, Hawaii. Eleven sites tested positive for enterovirus, indicating fecal contamination at these locations. As an additional means of viral concentration, shellfish were collected from 9 sample sites and subjected to dissection, RNA extraction, and subsequent RT-PCR. Shellfish tissue from 6 of 9 sites tested positive for enterovirus. The techniques implemented here are valuable resources to aid accurate reflection of microbial contamination in Hawaii's environmental waters.


Anti-tat Hutat2:Fc mediated protection against tat-induced neurotoxicity and HIV-1 replication in human monocyte-derived macrophages.

  • Wen Kang‎ et al.
  • Journal of neuroinflammation‎
  • 2014‎

HIV-1 Tat is essential for HIV replication and is also a well-known neurotoxic factor causing HIV-associated neurocognitive disorder (HAND). Currently, combined antiretroviral therapy targeting HIV reverse transcriptase or protease cannot prevent the production of early viral proteins, especially Tat, once HIV infection has been established. HIV-infected macrophages and glial cells in the brain still release Tat into the extracellular space where it can exert direct and indirect neurotoxicity. Therefore, stable production of anti-Tat antibodies in the brain would neutralize HIV-1 Tat and thus provide an effective approach to protect neurons.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: