Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Phosphorylation of the Synaptonemal Complex Protein Zip1 Regulates the Crossover/Noncrossover Decision during Yeast Meiosis.

  • Xiangyu Chen‎ et al.
  • PLoS biology‎
  • 2015‎

Interhomolog crossovers promote proper chromosome segregation during meiosis and are formed by the regulated repair of programmed double-strand breaks. This regulation requires components of the synaptonemal complex (SC), a proteinaceous structure formed between homologous chromosomes. In yeast, SC formation requires the "ZMM" genes, which encode a functionally diverse set of proteins, including the transverse filament protein, Zip1. In wild-type meiosis, Zmm proteins promote the biased resolution of recombination intermediates into crossovers that are distributed throughout the genome by interference. In contrast, noncrossovers are formed primarily through synthesis-dependent strand annealing mediated by the Sgs1 helicase. This work identifies a conserved region on the C terminus of Zip1 (called Zip1 4S), whose phosphorylation is required for the ZMM pathway of crossover formation. Zip1 4S phosphorylation is promoted both by double-strand breaks (DSBs) and the meiosis-specific kinase, MEK1/MRE4, demonstrating a role for MEK1 in the regulation of interhomolog crossover formation, as well as interhomolog bias. Failure to phosphorylate Zip1 4S results in meiotic prophase arrest, specifically in the absence of SGS1. This gain of function meiotic arrest phenotype is suppressed by spo11Δ, suggesting that it is due to unrepaired breaks triggering the meiotic recombination checkpoint. Epistasis experiments combining deletions of individual ZMM genes with sgs1-md zip1-4A indicate that Zip1 4S phosphorylation functions prior to the other ZMMs. These results suggest that phosphorylation of Zip1 at DSBs commits those breaks to repair via the ZMM pathway and provides a mechanism by which the crossover/noncrossover decision can be dynamically regulated during yeast meiosis.


Multiple Pairwise Analysis of Non-homologous Centromere Coupling Reveals Preferential Chromosome Size-Dependent Interactions and a Role for Bouquet Formation in Establishing the Interaction Pattern.

  • Philippe Lefrançois‎ et al.
  • PLoS genetics‎
  • 2016‎

During meiosis, chromosomes undergo a homology search in order to locate their homolog to form stable pairs and exchange genetic material. Early in prophase, chromosomes associate in mostly non-homologous pairs, tethered only at their centromeres. This phenomenon, conserved through higher eukaryotes, is termed centromere coupling in budding yeast. Both initiation of recombination and the presence of homologs are dispensable for centromere coupling (occurring in spo11 mutants and haploids induced to undergo meiosis) but the presence of the synaptonemal complex (SC) protein Zip1 is required. The nature and mechanism of coupling have yet to be elucidated. Here we present the first pairwise analysis of centromere coupling in an effort to uncover underlying rules that may exist within these non-homologous interactions. We designed a novel chromosome conformation capture (3C)-based assay to detect all possible interactions between non-homologous yeast centromeres during early meiosis. Using this variant of 3C-qPCR, we found a size-dependent interaction pattern, in which chromosomes assort preferentially with chromosomes of similar sizes, in haploid and diploid spo11 cells, but not in a coupling-defective mutant (spo11 zip1 haploid and diploid yeast). This pattern is also observed in wild-type diploids early in meiosis but disappears as meiosis progresses and homologous chromosomes pair. We found no evidence to support the notion that ancestral centromere homology plays a role in pattern establishment in S. cerevisiae post-genome duplication. Moreover, we found a role for the meiotic bouquet in establishing the size dependence of centromere coupling, as abolishing bouquet (using the bouquet-defective spo11 ndj1 mutant) reduces it. Coupling in spo11 ndj1 rather follows telomere clustering preferences. We propose that a chromosome size preference for centromere coupling helps establish efficient homolog recognition.


Global analysis of the meiotic crossover landscape.

  • Stacy Y Chen‎ et al.
  • Developmental cell‎
  • 2008‎

Tight control of the number and distribution of crossovers is of great importance for meiosis. Crossovers establish chiasmata, which are physical connections between homologous chromosomes that provide the tension necessary to align chromosomes on the meiotic spindle. Understanding the mechanisms underlying crossover control has been hampered by the difficulty in determining crossover distributions. Here, we present a microarray-based method to analyze multiple aspects of crossover control simultaneously and rapidly, at high resolution, genome-wide, and on a cell-by-cell basis. Using this approach, we show that loss of interference in zip2 and zip4/spo22 mutants is accompanied by a reduction in crossover homeostasis, thus connecting these two levels of crossover control. We also provide evidence to suggest that repression of crossing over at telomeres and centromeres arises from different mechanisms. Lastly, we uncover a surprising role for the synaptonemal complex component Zip1 in repressing crossing over at the centromere.


High throughput sequencing reveals alterations in the recombination signatures with diminishing Spo11 activity.

  • Beth Rockmill‎ et al.
  • PLoS genetics‎
  • 2013‎

Spo11 is the topoisomerase-like enzyme responsible for the induction of the meiosis-specific double strand breaks (DSBs), which initiates the recombination events responsible for proper chromosome segregation. Nineteen PCR-induced alleles of SPO11 were identified and characterized genetically and cytologically. Recombination, spore viability and synaptonemal complex (SC) formation were decreased to varying extents in these mutants. Arrest by ndt80 restored these events in two severe hypomorphic mutants, suggesting that ndt80-arrested nuclei are capable of extended DSB activity. While crossing-over, spore viability and synaptonemal complex (SC) formation defects correlated, the extent of such defects was not predictive of the level of heteroallelic gene conversions (prototrophs) exhibited by each mutant. High throughput sequencing of tetrads from spo11 hypomorphs revealed that gene conversion tracts associated with COs are significantly longer and gene conversion tracts unassociated with COs are significantly shorter than in wild type. By modeling the extent of these tract changes, we could account for the discrepancy in genetic measurements of prototrophy and crossover association. These findings provide an explanation for the unexpectedly low prototroph levels exhibited by spo11 hypomorphs and have important implications for genetic studies that assume an unbiased recovery of prototrophs, such as measurements of CO homeostasis. Our genetic and physical data support previous observations of DSB-limited meioses, in which COs are disproportionally maintained over NCOs (CO homeostasis).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: