Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 47 papers

Structure and function of sphingosine-1-phosphate lyase, a key enzyme of sphingolipid metabolism.

  • Florence Bourquin‎ et al.
  • Structure (London, England : 1993)‎
  • 2010‎

Sphingosine-1-phosphate lyase (SPL), a key enzyme of sphingolipid metabolism, catalyzes the irreversible degradation of sphingoid base phosphates. Its main substrate sphingosine-1-phosphate (S1P) acts both extracellularly, by binding G protein-coupled receptors of the lysophospholipid receptor family, and inside the cell, as a second messenger. There, S1P takes part in regulating various cellular processes and its levels are tightly regulated. SPL is a pivotal enzyme regulating S1P intracellular concentrations and a promising drug target for the design of immunosuppressants. We structurally and functionally characterized yeast SPL (Dpl1p) and its first prokaryotic homolog, from Symbiobacterium thermophilum. The Dpl1p structure served as a basis for a very reliable model of Homo sapiens SPL. The above results, together with in vitro and in vivo studies of SPL mutants, reveal which residues are involved in activity and substrate binding and pave the way to studies aimed at controlling the activity of this pivotal enzyme.


Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI.

  • Morihisa Fujita‎ et al.
  • The Journal of cell biology‎
  • 2011‎

Glycosylphosphatidylinositol (GPI) anchoring of proteins is a posttranslational modification occurring in the endoplasmic reticulum (ER). After GPI attachment, proteins are transported by coat protein complex II (COPII)-coated vesicles from the ER. Because GPI-anchored proteins (GPI-APs) are localized in the lumen, they cannot interact with cytosolic COPII components directly. Receptors that link GPI-APs to COPII are thought to be involved in efficient packaging of GPI-APs into vesicles; however, mechanisms of GPI-AP sorting are not well understood. Here we describe two remodeling reactions for GPI anchors, mediated by PGAP1 and PGAP5, which were required for sorting of GPI-APs to ER exit sites. The p24 family of proteins recognized the remodeled GPI-APs and sorted them into COPII vesicles. Association of p24 proteins with GPI-APs was pH dependent, which suggests that they bind in the ER and dissociate in post-ER acidic compartments. Our results indicate that p24 complexes act as cargo receptors for correctly remodeled GPI-APs to be sorted into COPII vesicles.


HCV 3a core protein increases lipid droplet cholesteryl ester content via a mechanism dependent on sphingolipid biosynthesis.

  • Ursula Loizides-Mangold‎ et al.
  • PloS one‎
  • 2014‎

Hepatitis C virus (HCV) infected patients often develop steatosis and the HCV core protein alone can induce this phenomenon. To gain new insights into the pathways leading to steatosis, we performed lipidomic profiling of HCV core protein expressing-Huh-7 cells and also assessed the lipid profile of purified lipid droplets isolated from HCV 3a core expressing cells. Cholesteryl esters, ceramides and glycosylceramides, but not triglycerides, increased specifically in cells expressing the steatogenic HCV 3a core protein. Accordingly, inhibitors of cholesteryl ester biosynthesis such as statins and acyl-CoA cholesterol acyl transferase inhibitors prevented the increase of cholesteryl ester production and the formation of large lipid droplets in HCV core 3a-expressing cells. Furthermore, inhibition of de novo sphingolipid biosynthesis by myriocin - but not of glycosphingolipid biosynthesis by miglustat - affected both lipid droplet size and cholesteryl ester level. The lipid profile of purified lipid droplets, isolated from HCV 3a core-expressing cells, confirmed the particular increase of cholesteryl ester. Thus, both sphingolipid and cholesteryl ester biosynthesis are affected by the steatogenic core protein of HCV genotype 3a. These results may explain the peculiar lipid profile of HCV-infected patients with steatosis.


Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress.

  • Lina Lindberg‎ et al.
  • PloS one‎
  • 2013‎

When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D) and Zygosaccharomyces bailii (CBS7555) cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L(-1), while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L(-1) acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS) showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP)2C 2.2×) and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP)2C 2.7×), when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to generate large rearrangements in its lipid profile.


Detection of genome-edited mutant clones by a simple competition-based PCR method.

  • Takeshi Harayama‎ et al.
  • PloS one‎
  • 2017‎

Genome editing by the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats / CRISPR-associated protein 9) system is a revolutionary strategy to study gene functions. Since the efficiency of gene disruption in cell culture does not reach 100% typically, cloning of mutant cells is often performed to obtain fully mutated cells. Therefore, a method to discriminate accurately mutated clones easily and quickly is crucial to accelerate the research using CRISPR/Cas9. Here, we show that knockout cells can be discriminated by a competition-based PCR, using a mixture of three primers, among which one primer overlaps with the Cas9 cleavage site. Together, we show how to optimize primer design in order to improve the effectiveness of the discrimination. Finally, we applied this method to show that mutations conferring drug resistance can be detected with high accuracy. The provided method is easy to perform and requires only basic laboratory equipment, making it suitable for almost all laboratories.


Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle.

  • Laurent Perrin‎ et al.
  • eLife‎
  • 2018‎

Circadian regulation of transcriptional processes has a broad impact on cell metabolism. Here, we compared the diurnal transcriptome of human skeletal muscle conducted on serial muscle biopsies in vivo with profiles of human skeletal myotubes synchronized in vitro. More extensive rhythmic transcription was observed in human skeletal muscle compared to in vitro cell culture as a large part of the in vivo mRNA rhythmicity was lost in vitro. siRNA-mediated clock disruption in primary myotubes significantly affected the expression of ~8% of all genes, with impact on glucose homeostasis and lipid metabolism. Genes involved in GLUT4 expression, translocation and recycling were negatively affected, whereas lipid metabolic genes were altered to promote activation of lipid utilization. Moreover, basal and insulin-stimulated glucose uptake were significantly reduced upon CLOCK depletion. Our findings suggest an essential role for the circadian coordination of skeletal muscle glucose homeostasis and lipid metabolism in humans.


1-Deoxydihydroceramide causes anoxic death by impairing chaperonin-mediated protein folding.

  • J Thomas Hannich‎ et al.
  • Nature metabolism‎
  • 2019‎

Ischaemic heart disease and stroke are the most common causes of death worldwide. Anoxia, defined as the lack of oxygen, is commonly seen in both these pathologies and triggers profound metabolic and cellular changes. Sphingolipids have been implicated in anoxia injury, but the pathomechanism is unknown. Here we show that anoxia-associated injury causes accumulation of the non-canonical sphingolipid 1-deoxydihydroceramide (DoxDHCer). Anoxia causes an imbalance between serine and alanine resulting in a switch from normal serine-derived sphinganine biosynthesis to non-canonical alanine-derived 1-deoxysphinganine. 1-Deoxysphinganine is incorporated into DoxDHCer, which impairs actin folding via the cytosolic chaperonin TRiC, leading to growth arrest in yeast, increased cell death upon anoxia-reoxygenation in worms and ischaemia-reperfusion injury in mouse hearts. Prevention of DoxDHCer accumulation in worms and in mouse hearts resulted in decreased anoxia-induced injury. These findings unravel key metabolic changes during oxygen deprivation and point to novel strategies to avoid tissue damage and death.


Genetically Encoded Supramolecular Targeting of Fluorescent Membrane Tension Probes within Live Cells: Precisely Localized Controlled Release by External Chemical Stimulation.

  • Javier López-Andarias‎ et al.
  • JACS Au‎
  • 2021‎

To image membrane tension in selected membranes of interest (MOI) inside living systems, the field of mechanobiology requires increasingly elaborated small-molecule chemical tools. We have recently introduced HaloFlipper, i.e., a mechanosensitive flipper probe that can localize in the MOI using HaloTag technology to report local membrane tension changes using fluorescence lifetime imaging microscopy. However, the linker tethering the probe to HaloTag hampers the lateral diffusion of the probe in all the lipid domains of the MOI. For a more global membrane tension measurement in any MOI, we present here a supramolecular chemistry strategy for selective localization and controlled release of flipper into the MOI, using a genetically encoded supramolecular tag. SupraFlippers, functionalized with a desthiobiotin ligand, can selectively accumulate in the organelle having expressed streptavidin. The addition of biotin as a biocompatible external stimulus with a higher affinity for Sav triggers the release of the probe, which spontaneously partitions into the MOI. Freed in the lumen of endoplasmic reticulum (ER), SupraFlippers report the membrane orders along the secretory pathway from the ER over the Golgi apparatus to the plasma membrane. Kinetics of the process are governed by both the probe release and the transport through lipid domains. The concentration of biotin can control the former, while the expression level of a transmembrane protein (Sec12) involved in the stimulation of the vesicular transport from ER to Golgi influences the latter. Finally, the generation of a cell-penetrating and fully functional Sav-flipper complex using cyclic oligochalcogenide (COC) transporters allows us to combine the SupraFlipper strategy and HaloTag technology.


Vacuole-Specific Lipid Release for Tracking Intracellular Lipid Metabolism and Transport in Saccharomyces cerevisiae.

  • Vladimir Girik‎ et al.
  • ACS chemical biology‎
  • 2022‎

Lipid metabolism is spatiotemporally regulated within cells, yet intervention into lipid functions at subcellular resolution remains difficult. Here, we report a method that enables site-specific release of sphingolipids and cholesterol inside the vacuole in Saccharomyces cerevisiae. Using this approach, we monitored real-time sphingolipid metabolic flux out of the vacuole by mass spectrometry and found that the endoplasmic reticulum-vacuole-tethering protein Mdm1 facilitated the metabolism of sphingoid bases into ceramides. In addition, we showed that cholesterol, once delivered into yeast using our method, could restore cell proliferation induced by ergosterol deprivation, overcoming the previously described sterol-uptake barrier under aerobic conditions. Together, these data define a new way to study intracellular lipid metabolism and transport from the vacuole in yeast.


Arf1 coordinates fatty acid metabolism and mitochondrial homeostasis.

  • Ludovic Enkler‎ et al.
  • Nature cell biology‎
  • 2023‎

Lipid mobilization through fatty acid β-oxidation is a central process essential for energy production during nutrient shortage. In yeast, this catabolic process starts in the peroxisome from where β-oxidation products enter mitochondria and fuel the tricarboxylic acid cycle. Little is known about the physical and metabolic cooperation between these organelles. Here we found that expression of fatty acid transporters and of the rate-limiting enzyme involved in β-oxidation is decreased in cells expressing a hyperactive mutant of the small GTPase Arf1, leading to an accumulation of fatty acids in lipid droplets. Consequently, mitochondria became fragmented and ATP synthesis decreased. Genetic and pharmacological depletion of fatty acids phenocopied the arf1 mutant mitochondrial phenotype. Although β-oxidation occurs in both mitochondria and peroxisomes in mammals, Arf1's role in fatty acid metabolism is conserved. Together, our results indicate that Arf1 integrates metabolism into energy production by regulating fatty acid storage and utilization, and presumably organelle contact sites.


Development of Genetically Encoded Fluorescent KSR1-Based Probes to Track Ceramides during Phagocytosis.

  • Vladimir Girik‎ et al.
  • International journal of molecular sciences‎
  • 2024‎

Ceramides regulate phagocytosis; however, their exact function remains poorly understood. Here, we sought (1) to develop genetically encoded fluorescent tools for imaging ceramides, and (2) to use them to examine ceramide dynamics during phagocytosis. Fourteen enhanced green fluorescent protein (EGFP) fusion constructs based on four known ceramide-binding domains were generated and screened. While most constructs localized to the nucleus or cytosol, three based on the CA3 ceramide-binding domain of kinase suppressor of ras 1 (KSR1) localized to the plasma membrane or autolysosomes. C-terminally tagged CA3 with a vector-based (C-KSR) or glycine-serine linker (C-KSR-GS) responded sensitively and similarly to ceramide depletion and accumulation using a panel of ceramide modifying drugs, whereas N-terminally tagged CA3 (N-KSR) responded differently to a subset of treatments. Lipidomic and liposome microarray analysis suggested that, instead, N-KSR may preferentially bind glucosyl-ceramide. Additionally, the three probes showed distinct dynamics during phagocytosis. Despite partial autolysosomal degradation, C-KSR and C-KSR-GS accumulated at the plasma membrane during phagocytosis, whereas N-KSR did not. Moreover, the weak recruitment of C-KSR-GS to the endoplasmic reticulum and phagosomes was enhanced through overexpression of the endoplasmic reticulum proteins stromal interaction molecule 1 (STIM1) and Sec22b, and was more salient in dendritic cells. The data suggest these novel probes can be used to analyze sphingolipid dynamics and function in living cells.


The SwissLipids knowledgebase for lipid biology.

  • Lucila Aimo‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2015‎

Lipids are a large and diverse group of biological molecules with roles in membrane formation, energy storage and signaling. Cellular lipidomes may contain tens of thousands of structures, a staggering degree of complexity whose significance is not yet fully understood. High-throughput mass spectrometry-based platforms provide a means to study this complexity, but the interpretation of lipidomic data and its integration with prior knowledge of lipid biology suffers from a lack of appropriate tools to manage the data and extract knowledge from it.


The peroxisomal enzyme L-PBE is required to prevent the dietary toxicity of medium-chain fatty acids.

  • Jun Ding‎ et al.
  • Cell reports‎
  • 2013‎

Specific metabolic pathways are activated by different nutrients to adapt the organism to available resources. Although essential, these mechanisms are incompletely defined. Here, we report that medium-chain fatty acids contained in coconut oil, a major source of dietary fat, induce the liver ω-oxidation genes Cyp4a10 and Cyp4a14 to increase the production of dicarboxylic fatty acids. Furthermore, these activate all ω- and β-oxidation pathways through peroxisome proliferator activated receptor (PPAR) α and PPARγ, an activation loop normally kept under control by dicarboxylic fatty acid degradation by the peroxisomal enzyme L-PBE. Indeed, L-pbe(-/-) mice fed coconut oil overaccumulate dicarboxylic fatty acids, which activate all fatty acid oxidation pathways and lead to liver inflammation, fibrosis, and death. Thus, the correct homeostasis of dicarboxylic fatty acids is a means to regulate the efficient utilization of ingested medium-chain fatty acids, and its deregulation exemplifies the intricate relationship between impaired metabolism and inflammation.


Synthetic multivalent antifungal peptides effective against fungi.

  • Rajamani Lakshminarayanan‎ et al.
  • PloS one‎
  • 2014‎

Taking advantage of the cluster effect observed in multivalent peptides, this work describes antifungal activity and possible mechanism of action of tetravalent peptide (B4010) which carries 4 copies of the sequence RGRKVVRR through a branched lysine core. B4010 displayed better antifungal properties than natamycin and amphotericin B. The peptide retained significant activity in the presence of monovalent/divalent cations, trypsin and serum and tear fluid. Moreover, B4010 is non-haemolytic and non-toxic to mice by intraperitoneal (200 mg/kg) or intravenous (100 mg/kg) routes. S. cerevisiae mutant strains with altered membrane sterol structures and composition showed hyper senstivity to B4010. The peptide had no affinity for cell wall polysaccharides and caused rapid dissipation of membrane potential and release of vital ions and ATP when treated with C. albicans. We demonstrate that additives which alter the membrane potential or membrane rigidity protect C. albicans from B4010-induced lethality. Calcein release assay and molecular dynamics simulations showed that the peptide preferentially binds to mixed bilayer containing ergosterol over phophotidylcholine-cholesterol bilayers. The studies further suggested that the first arginine is important for mediating peptide-bilayer interactions. Replacing the first arginine led to a 2-4 fold decrease in antifungal activities and reduced membrane disruption properties. The combined in silico and in vitro approach should facilitate rational design of new tetravalent antifungal peptides.


Lysosome-targeted photoactivation reveals local sphingosine metabolism signatures.

  • Suihan Feng‎ et al.
  • Chemical science‎
  • 2019‎

Lipids are essential components of eukaryotic cell membranes and play crucial roles in cellular signaling and metabolism. While increasing evidence shows that the activities of lipids are dependent upon subcellular localization, tools to study local lipid metabolism and signaling are limited. Herein, we report an approach that enabled us to selectively deliver photo-caged lipids into lysosomes and thereafter to quickly release the lipid molecules by illumination. On combining this method with genetic techniques and lipidomics, we were able to investigate the localization-dependent metabolism of an important intermediate of sphingolipid metabolism, sphingosine. Our data reveal a distinct metabolic pattern of lysosomal sphingosine. In general, this method has the potential to serve as a platform to study lysosomal metabolism and signaling of various lipids and metabolites in living cells.


Optical control of sphingosine-1-phosphate formation and function.

  • Johannes Morstein‎ et al.
  • Nature chemical biology‎
  • 2019‎

Sphingosine-1-phosphate (S1P) plays important roles as a signaling lipid in a variety of physiological and pathophysiological processes. S1P signals via a family of G-protein-coupled receptors (GPCRs) (S1P1-5) and intracellular targets. Here, we report on photoswitchable analogs of S1P and its precursor sphingosine, respectively termed PhotoS1P and PhotoSph. PhotoS1P enables optical control of S1P1-3, shown through electrophysiology and Ca2+ mobilization assays. We evaluated PhotoS1P in vivo, where it reversibly controlled S1P3-dependent pain hypersensitivity in mice. The hypersensitivity induced by PhotoS1P is comparable to that induced by S1P. PhotoS1P is uniquely suited for the study of S1P biology in cultured cells and in vivo because it exhibits prolonged metabolic stability compared to the rapidly metabolized S1P. Using lipid mass spectrometry analysis, we constructed a metabolic map of PhotoS1P and PhotoSph. The formation of these photoswitchable lipids was found to be light dependent, providing a novel approach to optically probe sphingolipid biology.


Lysophospholipids Facilitate COPII Vesicle Formation.

  • Alejandro Melero‎ et al.
  • Current biology : CB‎
  • 2018‎

Coat protein complex II (COPII) proteins form vesicles from the endoplasmic reticulum to export cargo molecules to the Golgi apparatus. Among the many proteins involved in this process, Sec12 is a key regulator, functioning as the guanosine diphosphate (GDP) exchange factor for Sar1p, the small guanosine triphosphatase (GTPase) that initiates COPII assembly. Here we show that overexpression of phospholipase B3 in the thermosensitive sec12-4 mutant partially restores growth and protein transport at non-permissive temperatures. Lipidomics analyses of these cells show a higher content of lysophosphatidylinositol (lysoPI), consistent with the lipid specificity of PLB3. Furthermore, we show that lysoPI is specifically enriched in COPII vesicles isolated from in vitro budding assays. As these results suggested that lysophospholipids could facilitate budding under conditions of defective COPII coat dynamics, we reconstituted COPII binding onto giant liposomes with purified proteins and showed that lysoPI decreases membrane rigidity and enhances COPII recruitment to liposomes. Our results support a mechanical facilitation of COPII budding by lysophospholipids.


Patches and Blebs: A Comparative Study of the Composition and Biophysical Properties of Two Plasma Membrane Preparations from CHO Cells.

  • Bingen G Monasterio‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

This study was aimed at preparing and characterizing plasma membranes (PM) from Chinese Hamster Ovary (CHO) cells. Two methods of PM preparation were applied, one based on adhering cells to a poly-lysine-coated surface, followed by hypotonic lysis and removal of intracellular components, so that PM patches remain adhered to each other, and a second one consisting of bleb induction in cells, followed by separation of giant plasma membrane vesicles (GPMV). Both methods gave rise to PM in sufficient amounts to allow biophysical and biochemical characterization. Laurdan generalized polarization was used to measure molecular order in membranes, PM preparations were clearly more ordered than the average cell membranes (GP ≈0.450 vs. ≈0.20 respectively). Atomic force microscopy was used in the force spectroscopy mode to measure breakthrough forces of PM, both PM preparations provided values in the 4-6 nN range, while the corresponding value for whole cell lipid extracts was ≈2 nN. Lipidomic analysis of the PM preparations revealed that, as compared to the average cell membranes, PM were enriched in phospholipids containing 30-32 C atoms in their acyl chains but were relatively poor in those containing 34-40 C atoms. PM contained more saturated and less polyunsaturated fatty acids than the average cell membranes. Blebs (GPMV) and patches were very similar in their lipid composition, except that blebs contained four-fold the amount of cholesterol of patches (≈23 vs. ≈6 mol% total membrane lipids) while the average cell lipids contained 3 mol%. The differences in lipid composition are in agreement with the observed variations in physical properties between PM and whole cell membranes.


mTORC2 Promotes Tumorigenesis via Lipid Synthesis.

  • Yakir Guri‎ et al.
  • Cancer cell‎
  • 2017‎

Dysregulated mammalian target of rapamycin (mTOR) promotes cancer, but underlying mechanisms are poorly understood. We describe an mTOR-driven mouse model that displays hepatosteatosis progressing to hepatocellular carcinoma (HCC). Longitudinal proteomic, lipidomics, and metabolomic analyses revealed that hepatic mTORC2 promotes de novo fatty acid and lipid synthesis, leading to steatosis and tumor development. In particular, mTORC2 stimulated sphingolipid (glucosylceramide) and glycerophospholipid (cardiolipin) synthesis. Inhibition of fatty acid or sphingolipid synthesis prevented tumor development, indicating a causal effect in tumorigenesis. Increased levels of cardiolipin were associated with tubular mitochondria and enhanced oxidative phosphorylation. Furthermore, increased lipogenesis correlated with elevated mTORC2 activity and HCC in human patients. Thus, mTORC2 promotes cancer via formation of lipids essential for growth and energy production.


Membrane Phosphoproteomics of Yeast Early Response to Acetic Acid: Role of Hrk1 Kinase and Lipid Biosynthetic Pathways, in Particular Sphingolipids.

  • Joana F Guerreiro‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Saccharomyces cerevisiae response and tolerance to acetic acid is critical in industrial biotechnology and in acidic food and beverages preservation. The HRK1 gene, encoding a protein kinase of unknown function belonging to the "Npr1-family" of kinases known to be involved in the regulation of plasma membrane transporters, is an important determinant of acetic acid tolerance. This study was performed to identify the alterations occurring in yeast membrane phosphoproteome profile during the adaptive early response to acetic acid stress (following 1 h of exposure to a sub-lethal inhibitory concentration; 50 mM at pH 4.0) and the effect of HRK1 expression on the phosphoproteome. Results from mass spectrometry analysis following the prefractionation and specific enrichment of phosphorylated peptides using TiO2 beads highlight the contribution of processes related with translation, protein folding and processing, transport, and cellular homeostasis in yeast response to acetic acid stress, with particular relevance for changes in phosphorylation of transport-related proteins, found to be highly dependent on the Hrk1 kinase. Twenty different phosphoproteins known to be involved in lipid and sterol metabolism were found to be differently phosphorylated in response to acetic acid stress, including several phosphopeptides that had not previously been described as being phosphorylated. The suggested occurrence of cellular lipid composition remodeling during the short term yeast response to acetic acid was confirmed: Hrk1 kinase-independent reduction in phytoceramide levels and a reduction in phosphatidylcholine and phosphatidylinositol levels under acetic acid stress in the more susceptible hrk1Δ strain were revealed by a lipidomic analysis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: