Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Characterization of spontaneous spheroids from oral mucosa-derived cells and their direct comparison with spheroids from skin-derived cells.

  • Ni Li‎ et al.
  • Stem cell research & therapy‎
  • 2019‎

Our group has developed a novel method for spontaneous spheroid formation using a specific low-adherence culture plate with around 90° water contact angle. In this study, this method was applied for oral mucosa-derived cells. First, the feasibility of spontaneous spheroid formation was tested. Next, the characteristics of spontaneous spheroids from oral mucosa- and skin-derived cells were compared with special focus on the stemness and neuronal differentiation capability.


Alliin inhibits adipocyte differentiation by downregulating Akt expression: Implications for metabolic disease.

  • Ni Li‎ et al.
  • Experimental and therapeutic medicine‎
  • 2021‎

Obesity is currently an important health problem and is associated with an increased likelihood of various diseases. The efficacies of various natural treatments have been assessed for their utility in treating obesity. Alliin (S-allyl-L-cysteine sulfoxides) is considered the major component of garlic and has a wide range of natural antioxidant properties. However, the direct effects of alliin on obesity have not been well clarified. The present study investigated the effects and possible mechanisms of alliin on adipocyte differentiation. The 3T3-L1 cells were treated with alliin (0-40 µg/ml) during adipogenic differentiation. The effect of alliin on lipid accumulation was evaluated by Oil red O staining. Reverse transcription-quantitative PCR was performed to investigate the expression levels of adipogenic differentiation-related genes. The accumulation of lipid droplets was markedly inhibited following alliin treatment. The expression levels of multiple adipogenic transcription markers, such as CCAAT/enhancer-binding protein (C/EBP) β, C/EBP α and peroxisome proliferation-activity receptor γ, were markedly decreased following treatment with alliin during adipogenic differentiation. Expression levels of several adipocyte-related genes were subsequently suppressed. Additionally, alliin suppressed PKB/Akt and PI3K expression. These results suggested that alliin exhibits anti-adipogenic activity by downregulating major adipogenic differentiation-related genes and Akt/PI3K expression. Alliin may have a potential therapeutic effect on metabolic disease.


The Effects of Anti-LAP Monoclonal Antibody Down-regulation of CD4+LAP+ T Cells on Allogeneic Corneal Transplantation in Mice.

  • Shang Li‎ et al.
  • Scientific reports‎
  • 2018‎

CD4+latency-associated peptide (LAP)+ T cells are a newly discovered T cell subset with suppressive function on immune responses. In this study, we investigate the role of CD4+LAP+ T cells on mice corneal allograft survival by down-regulating their expression using anti-LAP mAb. We show that a blockage of LAP leads to a decrease in the percentage of T cells expressing CD4+Foxp3+, CD4+GARP+, CD4+LAP+ and CD4+IL-10+ in the lymph nodes and spleens of mice undergoing orthotopic penetrating transplantation of corneal allograft, without affecting corneal graft survival. In addition, higher percentages of CD4+IFN-γ+ and CD4+IL-17A+ T cells in the lymph nodes and spleens, as well as TNF, IFN-γ, IL-17A and IL-6 levels in the aqueous humor, significantly increase in mice with rejected corneal grafts. The expression of TGF-β1 decreases in corneal grafts during corneal rejection period. It is therefore possible that anti-LAP mAb can down-regulate the regulatory T cell subsets with its immunosuppressive effects. The rejection of corneal grafts seems to mainly be associated with the up-regulation of Th1 and Th17 cell subsets in peripheral lymph nodes.


Full-Spectrum Neuronal Diversity and Stereotypy through Whole Brain Morphometry.

  • Yufeng Liu‎ et al.
  • Research square‎
  • 2023‎

We conducted a large-scale study of whole-brain morphometry, analyzing 3.7 peta-voxels of mouse brain images at the single-cell resolution, producing one of the largest multi-morphometry databases of mammalian brains to date. We spatially registered 205 mouse brains and associated data from six Brain Initiative Cell Census Network (BICCN) data sources covering three major imaging modalities from five collaborative projects to the Allen Common Coordinate Framework (CCF) atlas, annotated 3D locations of cell bodies of 227,581 neurons, modeled 15,441 dendritic microenvironments, characterized the full morphology of 1,891 neurons along with their axonal motifs, and detected 2.58 million putative synaptic boutons. Our analysis covers six levels of information related to neuronal populations, dendritic microenvironments, single-cell full morphology, sub-neuronal dendritic and axonal arborization, axonal boutons, and structural motifs, along with a quantitative characterization of the diversity and stereotypy of patterns at each level. We identified 16 modules consisting of highly intercorrelated brain regions in 13 functional brain areas corresponding to 314 anatomical regions in CCF. Our analysis revealed the dendritic microenvironment as a powerful method for delineating brain regions of cell types and potential subtypes. We also found that full neuronal morphologies can be categorized into four distinct classes based on spatially tuned morphological features, with substantial cross-areal diversity in apical dendrites, basal dendrites, and axonal arbors, along with quantified stereotypy within cortical, thalamic and striatal regions. The lamination of somas was found to be more effective in differentiating neuron arbors within the cortex. Further analysis of diverging and converging projections of individual neurons in 25 regions throughout the brain reveals branching preferences in the brain-wide and local distributions of axonal boutons. Overall, our study provides a comprehensive description of key anatomical structures of neurons and their types, covering a wide range of scales and features, and contributes to our understanding of neuronal diversity and its function in the mammalian brain.


Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH.

  • Meng Zhang‎ et al.
  • Nature‎
  • 2021‎

A mammalian brain is composed of numerous cell types organized in an intricate manner to form functional neural circuits. Single-cell RNA sequencing allows systematic identification of cell types based on their gene expression profiles and has revealed many distinct cell populations in the brain1,2. Single-cell epigenomic profiling3,4 further provides information on gene-regulatory signatures of different cell types. Understanding how different cell types contribute to brain function, however, requires knowledge of their spatial organization and connectivity, which is not preserved in sequencing-based methods that involve cell dissociation. Here we used a single-cell transcriptome-imaging method, multiplexed error-robust fluorescence in situ hybridization (MERFISH)5, to generate a molecularly defined and spatially resolved cell atlas of the mouse primary motor cortex. We profiled approximately 300,000 cells in the mouse primary motor cortex and its adjacent areas, identified 95 neuronal and non-neuronal cell clusters, and revealed a complex spatial map in which not only excitatory but also most inhibitory neuronal clusters adopted laminar organizations. Intratelencephalic neurons formed a largely continuous gradient along the cortical depth axis, in which the gene expression of individual cells correlated with their cortical depths. Furthermore, we integrated MERFISH with retrograde labelling to probe projection targets of neurons of the mouse primary motor cortex and found that their cortical projections formed a complex network in which individual neuronal clusters project to multiple target regions and individual target regions receive inputs from multiple neuronal clusters.


Cryopreserved Spontaneous Spheroids from Compact Bone-Derived Mesenchymal Stromal Cells for Bone Tissue Engineering.

  • Hongwei Dong‎ et al.
  • Tissue engineering. Part C, Methods‎
  • 2021‎

Spontaneously formed spheroids from mouse compact bone-derived mesenchymal stromal cells (CB-MSCs) possess enhanced stemness and superior plasticity. In this study, the effect of cryopreservation on viability, stemness, and osteogenic differentiation capability of spontaneous CB-MSC spheroids were investigated. CB-MSCs were isolated from mouse femur and tibia. Spheroids were cryopreserved with various concentrations of dimethyl sulfoxide (DMSO). After thawing, the number of living and dead cells was measured. The expression levels of stem cell markers and osteogenic marker genes were analyzed. The cryopreserved and noncryopreserved spheroids were transplanted in mice with a beta-tricalcium phosphate as a scaffold to evaluate the in vivo bone-forming capability. The percentage of living cells was highest when 5% DMSO was used as a cryoprotectant, confirmed by the number of dead cells. The expression of stem cell marker genes and osteogenic differentiation capability were maintained after cryopreservation with 5% DMSO. The cryopreserved spontaneous CB-MSC spheroids showed remarkable new bone formation in vivo, identical to that of the noncryopreserved spheroids even without osteogenic induction. The cryopreserved spontaneous CB-MSC spheroids retained stemness and osteogenic differentiation capability and highlight the utility of spontaneous CB-MSC spheroids as ready-to-use tissue-engineered products for bone tissue engineering.


Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington's disease.

  • Nan Wang‎ et al.
  • Nature medicine‎
  • 2014‎

Huntington's disease (HD) is a fatal dominantly inherited neurodegenerative disorder caused by a CAG repeat expansion leading to an elongated polyglutamine stretch in huntingtin. Mutant huntingtin (mHTT) is ubiquitously expressed in all cells but elicits selective cortical and striatal neurodegeneration in HD. The mechanistic basis for such selective neuronal vulnerability remains unclear. A necessary step toward resolving this enigma is to define the cell types in which mHTT expression is causally linked to the disease pathogenesis. Using a conditional transgenic mouse model of HD, in which the mice express full-length human mHTT from a bacterial artificial chromosome transgene (BACHD), we genetically reduced mHTT expression in neuronal populations in the striatum, cortex or both. We show that reduction of cortical mHTT expression in BACHD mice partially improves motor and psychiatric-like behavioral deficits but does not improve neurodegeneration, whereas reduction of mHTT expression in both neuronal populations consistently ameliorates all behavioral deficits and selective brain atrophy in this HD model. Furthermore, whereas reduction of mHTT expression in cortical or striatal neurons partially ameliorates corticostriatal synaptic deficits, further restoration of striatal synaptic function can be achieved by reduction of mHTT expression in both neuronal cell types. Our study demonstrates distinct but interacting roles of cortical and striatal mHTT in HD pathogenesis and suggests that optimal HD therapeutics may require targeting mHTT in both cortical and striatal neurons.


Spontaneously Formed Spheroids from Mouse Compact Bone-Derived Cells Retain Highly Potent Stem Cells with Enhanced Differentiation Capability.

  • Kai Chen‎ et al.
  • Stem cells international‎
  • 2019‎

The results from our recent study showed the presence of two distinct spheroid-forming mechanisms, i.e., spontaneous and mechanical. In this study, we focused on the spontaneously formed spheroids, and the character of spontaneously formed spheroids from mouse compact bone-derived cells (CBDCs) was explored. Cells from (C57BL/6J) mouse leg bones were isolated, and compact bone-derived cells were cultured after enzymatic digestion. Spontaneous spheroid formation was achieved on a culture plate with specific water contact angle as reported. The expression levels of embryonic stem cell markers were analyzed using immunofluorescence and quantitative reverse transcription polymerase chain reaction. Then, the cells from spheroids were induced into osteogenic and neurogenic lineages. The spontaneously formed spheroids from CBDCs were positive for ES cell markers such as SSEA1, Sox2, Oct4, and Nanog. Additionally, the expressions of fucosyltransferase 4/FUT4 (SSEA1), Sox2, and Nanog were significantly higher than those in monolayer cultured cells. The gene expression of mesenchymal stem cell markers was almost identical in both spheroids and monolayer-cultured cells, but the expression of Sca-1 was higher in spheroids. Spheroid-derived cells showed significantly higher osteogenic and neurogenic marker expression than monolayer-cultured cells after induction. Spontaneously formed spheroids expressed stem cell markers and showed enhanced osteogenic and neurogenic differentiation capabilities than cells from the conventional monolayer culture, which supports the superior stemness.


The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data.

  • Paul M Thompson‎ et al.
  • Brain imaging and behavior‎
  • 2014‎

The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.


Cross-modal coherent registration of whole mouse brains.

  • Lei Qu‎ et al.
  • Nature methods‎
  • 2022‎

Recent whole-brain mapping projects are collecting large-scale three-dimensional images using modalities such as serial two-photon tomography, fluorescence micro-optical sectioning tomography, light-sheet fluorescence microscopy, volumetric imaging with synchronous on-the-fly scan and readout or magnetic resonance imaging. Registration of these multi-dimensional whole-brain images onto a standard atlas is essential for characterizing neuron types and constructing brain wiring diagrams. However, cross-modal image registration is challenging due to intrinsic variations of brain anatomy and artifacts resulting from different sample preparation methods and imaging modalities. We introduce a cross-modal registration method, mBrainAligner, which uses coherent landmark mapping and deep neural networks to align whole mouse brain images to the standard Allen Common Coordinate Framework atlas. We build a brain atlas for the fluorescence micro-optical sectioning tomography modality to facilitate single-cell mapping, and used our method to generate a whole-brain map of three-dimensional single-neuron morphology and neuron cell types.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: