Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 81 papers

Advanced Glycation End Products Impair Glucose-Stimulated Insulin Secretion of a Pancreatic β-Cell Line INS-1-3 by Disturbance of Microtubule Cytoskeleton via p38/MAPK Activation.

  • Jia You‎ et al.
  • Journal of diabetes research‎
  • 2016‎

Advanced glycation end products (AGEs) are believed to be involved in diverse complications of diabetes mellitus. Overexposure to AGEs of pancreatic β-cells leads to decreased insulin secretion and cell apoptosis. Here, to understand the cytotoxicity of AGEs to pancreatic β-cells, we used INS-1-3 cells as a β-cell model to address this question, which was a subclone of INS-1 cells and exhibited high level of insulin expression and high sensitivity to glucose stimulation. Exposed to large dose of AGEs, even though more insulin was synthesized, its secretion was significantly reduced from INS-1-3 cells. Further, AGEs treatment led to a time-dependent increase of depolymerized microtubules, which was accompanied by an increase of activated p38/MAPK in INS-1-3 cells. Pharmacological inhibition of p38/MAPK by SB202190 reversed microtubule depolymerization to a stabilized polymerization status but could not rescue the reduction of insulin release caused by AGEs. Taken together, these results suggest a novel role of AGEs-induced impairment of insulin secretion, which is partially due to a disturbance of microtubule dynamics that resulted from an activation of the p38/MAPK pathway.


Dot1L mediated histone H3 lysine79 methylation is essential to meiosis progression in mouse oocytes.

  • Xuguang Wang‎ et al.
  • Neuro endocrinology letters‎
  • 2014‎

Post-translational modifications of lysine residues of histones can result in a series of functional changes. Lysine 79 of histone H3 (H3K79) can be methylated specifically by the Dot1 family of histone lysine methyltransferases. Although multiple developmental abnormalities in Dot1L-deficient mouse embryos have been studied, the biological function of H3K79 methylation in mammal oocytes remains unclear. Here, the distribution of Dot1L, methyltransferase of residue lys79 of histone H3 (H3K79) in mouse, and its effect on mouse oocytes meiosis were investigated to examine whether there are changes in the pattern of distribution and effect of Dot1L on mouse oocytes meiosis.


PKCδ contributes to oxidative stress-induced apoptosis in porcine ovarian granulosa cells via activating JNK.

  • Shuo Liu‎ et al.
  • Theriogenology‎
  • 2019‎

Oxidative stress-induced apoptosis of granulosa cells (GCs) is believed to be an important cause of follicular atresia. Our previous work showed that the c-Jun N-terminal kinase (also known as JNK) might promote apoptosis in GCs during oxidative stress. The aim of this study was to investigate the upstream signaling required for JNK-mediated GCs apoptosis during oxidative stress. Since PKCδ and ASK1 have been suggested to regulate JNK activity in some types of cells, we hypothesized that PKCδ and ASK1 might contribute to JNK-dependent apoptosis in GCs suffering oxidative stimulation. To test this assumption, porcine GCs obtained from healthy follicles were treated with H2O2 alone, or together with inhibitors against PKCδ and JNK, and then collected for cell viability assay, TUNEL staining, immunoprecipitation, western blotting, or JNK activity detection in vitro. The current results showed that the cell viability loss, DNA fragmentation, morphological shrinkage, and nuclear condensation in H2O2-treated porcine GCs was correlated with enhanced activation of JNK. Although ASK1 was supposed to be a JNK activator, we found no definite role of ASK1 in JNK-induced GCs apoptosis during oxidative stress. Further investigations revealed that H2O2-mediated PKCδ activation was required for the apoptotic death of porcine GCs. Particularly, the pro-apoptotic effects of PKCδ on porcine GCs might be achieved by activating the mitochondrial pathway. Importantly, we found that p-PKCδ acts as an upstream activator of JNK in H2O2-treated porcine GCs. However, JNK has no regulatory effect on PKCδ activity. Taken together, our findings provided a novel model of GCs apoptosis involving the activation of PKCδ/JNK/mitochondrial apoptosis axis during oxidative stress.


Pseudo-hemorrhagic region formation in pancreatic neuroendocrine tumors is a result of blood vessel dilation followed by endothelial cell detachment.

  • Zai Wang‎ et al.
  • Oncology letters‎
  • 2018‎

Aberrant blood vessel formation and hemorrhage may contribute to tumor progression and are potential targets in the treatment of several types of cancer. Pancreatic neuroendocrine tumors (PNETs) are highly vascularized, particularly when they are well-differentiated. However, the process of vascularization and endothelial cell detachment in PNETs is poorly understood. In the present study, 132 PNET clinical samples were examined and a special type of hemorrhagic region was observed in ~30% of the samples regardless of tumor subtype. These hemorrhagic regions were presented as blood-filled caverns with a smooth boundary and were unlined by endothelial cells. Based on the extensive endothelial cell detachment observed in the clinical samples, the formation process of these blood-filled caverns was hypothesized. Blood vessel dilation followed by detachment of endothelial cells from the surrounding tumor tissue was speculated. This was further supported using an INS-1 xenograft insulinoma model. As the formation process was distinct from the typical diffusive hemorrhage, it was named 'pseudo-hemorrhage'. Furthermore, it was demonstrated that epithelial (E-) cadherin and β-catenin were overexpressed in tumor cells surrounding these pseudo-hemorrhagic regions. Therefore, even though no statistically significant association of pseudo-hemorrhage with clinical features (metastasis or disease recurrence) was identified, the high levels of E-cadherin and β-catenin expression may suggest that a number of features of normal islet cells are retained.


Melatonin protects mouse granulosa cells against oxidative damage by inhibiting FOXO1-mediated autophagy: Implication of an antioxidation-independent mechanism.

  • Ming Shen‎ et al.
  • Redox biology‎
  • 2018‎

Oxidative stress has been described as a prime driver of granulosa cell (GCs) death during follicular atresia. Increasing evidence suggests potential roles of melatonin in protecting GCs from oxidative injury, though the underlying mechanisms remain largely undetermined. Here we first proposed that the inhibition of autophagy through some novel regulators contributes to melatonin-mediated GCs survival under conditions of oxidative stress. Oxidant-induced loss of GCs viability was significantly reduced after melatonin administration, which was correlated with attenuated autophagic signals upon oxidative stimulation both in vivo and in vitro. Compared with melatonin treatment, suppression of autophagy displayed similar preventive effect on GCs death during oxidative stress, but melatonin provided no additional protection in GCs pretreated with autophagy inhibitors. Notably, we found that melatonin-directed regulation of autophagic death was independent of its antioxidation/radical scavenging ability. Further investigations identified FOXO1 as a critical downstream effector of melatonin in promoting GCs survival from oxidative stress-induced autophagy. Specifically, suppression of FOXO1 via the melatonin-phosphatidylinositol 3-kinase (PI3K)-AKT axis not only improved GCs resistance to oxidative stress, but also abolished the autophagic response, from genes expression to the formation of autophagic vacuoles. Moreover, the activation of SIRT1 signaling was required for melatonin-mediated deacetylation of FOXO1 and its interaction with ATG proteins, as well as the inhibition of autophagic death in GCs suffering oxidative stress. These findings reveal a brand new mechanism of melatonin in defense against oxidative damage to GCs by repressing FOXO1, which may be a potential therapeutic target for anovulatory disorders.


Genome-scale identification of nucleosome organization by using 1000 porcine oocytes at different developmental stages.

  • Chenyu Tao‎ et al.
  • PloS one‎
  • 2017‎

The nucleosome is the basic structural unit of chromosomes, and its occupancy and distribution in promoters are crucial for the regulation of gene expression. During the growth process of porcine oocytes, the "growing" oocytes (SF) have a much higher transcriptional activity than the "fully grown" oocytes (BF). However, the chromosome status of the two kinds of oocytes remains poorly understood. In this study, we profiled the nucleosome distributions of SF and BF with as few as 1000 oocytes. By comparing the altered regions, we found that SF tended toward nucleosome loss and more open chromosome architecture than BF did. BF had decreased nucleosome occupancy in the coding region and increased nucleosome occupancy in the promoter compared to SF. The nucleosome occupancy of SF was higher than that of BF in the GC-poor regions, but lower than that of BF in the GC-rich regions. The nucleosome distribution around the transcriptional start site (TSS) of all the genes of the two samples was basically the same, but the nucleosome occupancy around the TSS of SF was lower than that of BF. GO functional annotation of genes with different nucleosome occupancy in promoter showed the genes were mainly involved in cell, cellular process, and metabolic process biological process. The results of this study revealed the dynamic reorganization of porcine oocytes in different developmental stages and the critical role of nucleosome arrangement during the oocyte growth process.


Dynamic Reorganization of Nucleosome Positioning in Somatic Cells after Transfer into Porcine Enucleated Oocytes.

  • Chenyu Tao‎ et al.
  • Stem cell reports‎
  • 2017‎

The nucleosome, the fundamental structural unit of chromatin, is a critical regulator of gene expression. The mechanisms governing changes to nucleosome occupancy and positioning during somatic cell reprogramming remain poorly understood. We established a method for generating genome-wide nucleosome maps of porcine embryonic fibroblasts (PEF), reconstructed 1-cell embryos generated by somatic cell nuclear transfer (SCNT), and fertilized zygotes (FZ) using MNase sequencing with only 1,000 cells. We found that donor PEF chromatin, especially X chromosome, became more open after transfer into porcine oocytes and nucleosome occupancy decreased in promoters but increased in the genic regions. Nucleosome arrangements around transcriptional start sites of genes with different expression levels in somatic cells tended to become transcriptionally silent in SCNT; however, some pluripotency genes adopted transcriptionally active nucleosome arrangements. FZ and SCNT had similar characteristics, unlike PEF. This study reveals the dynamics and importance of nucleosome positioning and chromatin organization early after reprogramming.


Identification of key microRNAs affecting drip loss in porcine longissimus dorsi by RNA-Seq.

  • Wei Wei‎ et al.
  • Gene‎
  • 2018‎

MicroRNAs (miRNAs) are a class of ~22-nt non-coding small RNA that play an important role in various metabolic processes, mainly through suppressing the expression of protein coding genes at post-transcriptional level. Drip loss (DL) is one of the most important meat quality traits affecting the end product yield and quality of pork. To date, the underlying regulatory factors involved in DL trait are still incompletely understood. In the present study, we constructed two small RNA libraries with longissimus dorsi muscles from the higher DL (WJJ-H group) and the lower DL (WJJ-L group) individuals, and applied RNA-Seq technology to identify the differentially expressed miRNAs between the two extreme phenotypes of DL groups. A total of 184 and 176 porcine known miRNAs were detected from WJJ-H and WJJ-L groups, respectively. Moreover, 73 differentially expressed miRNAs were identified between two groups, of which 40 were up-regulated and 33 were down-regulated. In addition, 133 and 140 novel potential miRNAs were predicted from WJJ-H and WJJ-L groups, respectively. Notably, we preliminary confirmed that both miRNA-499 and miRNA-22 were potential candidates influencing DL trait by their expression pattern analysis. Overall, our data enhance the knowledge of porcine skeletal muscle miRNAs, and provide foundation for clarifying the miRNA regulatory mechanisms involved in DL trait.


A Key Gene, PLIN1, Can Affect Porcine Intramuscular Fat Content Based on Transcriptome Analysis.

  • Bojiang Li‎ et al.
  • Genes‎
  • 2018‎

Intramuscular fat (IMF) content is an important indicator for meat quality evaluation. However, the key genes and molecular regulatory mechanisms affecting IMF deposition remain unclear. In the present study, we identified 75 differentially expressed genes (DEGs) between the higher (H) and lower (L) IMF content of pigs using transcriptome analysis, of which 27 were upregulated and 48 were downregulated. Notably, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the DEG perilipin-1 (PLIN1) was significantly enriched in the fat metabolism-related peroxisome proliferator-activated receptor (PPAR) signaling pathway. Furthermore, we determined the expression patterns and functional role of porcine PLIN1. Our results indicate that PLIN1 was highly expressed in porcine adipose tissue, and its expression level was significantly higher in the H IMF content group when compared with the L IMF content group, and expression was increased during adipocyte differentiation. Additionally, our results confirm that PLIN1 knockdown decreases the triglyceride (TG) level and lipid droplet (LD) size in porcine adipocytes. Overall, our data identify novel candidate genes affecting IMF content and provide new insight into PLIN1 in porcine IMF deposition and adipocyte differentiation.


Identification of candidate genes associated with porcine meat color traits by genome-wide transcriptome analysis.

  • Bojiang Li‎ et al.
  • Scientific reports‎
  • 2016‎

Meat color is considered to be the most important indicator of meat quality, however, the molecular mechanisms underlying traits related to meat color remain mostly unknown. In this study, to elucidate the molecular basis of meat color, we constructed six cDNA libraries from biceps femoris (Bf) and soleus (Sol), which exhibit obvious differences in meat color, and analyzed the whole-transcriptome differences between Bf (white muscle) and Sol (red muscle) using high-throughput sequencing technology. Using DEseq2 method, we identified 138 differentially expressed genes (DEGs) between Bf and Sol. Using DEGseq method, we identified 770, 810, and 476 DEGs in comparisons between Bf and Sol in three separate animals. Of these DEGs, 52 were overlapping DEGs. Using these data, we determined the enriched GO terms, metabolic pathways and candidate genes associated with meat color traits. Additionally, we mapped 114 non-redundant DEGs to the meat color QTLs via a comparative analysis with the porcine quantitative trait loci (QTL) database. Overall, our data serve as a valuable resource for identifying genes whose functions are critical for meat color traits and can accelerate studies of the molecular mechanisms of meat color formation.


Transcriptome comparison between prenatal and postnatal Large White livers identifies differences in the expression level of genes related to metabolism and postnatal growth.

  • Jingge Liu‎ et al.
  • Gene‎
  • 2019‎

The current study examined the liver transcriptomic profiles of the Large White different in developmental periods. It was performed on pigs of two developmental stages: 70-day fetus (P70) and 70-day piglets (D70). The objective of the study was to identify genes associated with Large White liver lipid metabolism, growth and development. We sequenced eight sRNA libraries of liver samples from four Large White at P70 and D70 respectively. We totally obtained 19,202 genes. 4916 of them were found to be differentially expressed (DEGs) (p < 0.05, fold change ≥ 1), of which 2502 were up-regulated and 2414 were down-regulated. GO enrichment and KEGG pathway analysis indicated that ACACA, ACADM, ACAA2 and HADH were simultaneously enriched in diverse pathways related to lipid metabolism, and so they were considered to be the promising candidate genes which could affect the porcine liver lipid metabolism. Notably, the gene insulin-like growth factor 1 (IGF1) which participated in somatotropic axis signaling was found to be up-regulated in D70 compared with P70. miRWalk and TargetScan softwares were used to screen the miRNAs which bound to the 3' untranslated region (3'UTR) of IGF1. After integration analysis with miRNAs sequencing data, miR-18b and miR-130b-3p were selected for further study. MiR-18b and miR-130b-3p were down-regulated in D70 compared with P70. Dual luciferase assays indicated that miR-18b and miR-130b-3p could obviously decrease (p < 0.05) the fluorescence activity of the group transfected with the wild-type vector of IGF1 3'UTR, while the relative luciferase activity of the group transfected with the mutant vector of IGF1 3'UTR did not change significantly. Taken together, it indicated that miR-18b and miR-130b-3p could target IGF1 directly.


Integrated Analysis of miRNA-mRNA Interaction Network in Porcine Granulosa Cells Undergoing Oxidative Stress.

  • Xing Du‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2019‎

Oxidative stress (OS), a common intracellular phenomenon induced by excess reactive oxygen species (ROS) generation, has been shown to be associated with mammalian ovarian follicular development blockage and granulosa cell (GC) impairment. However, the mechanism involved in these effects remains unknown, and the effect of OS on the transcriptome profiles in porcine GCs has not been fully characterized. In this study, we found that hydrogen peroxide-mediated oxidative stress induced porcine GC apoptosis and impaired cell viability. Moreover, RNA-seq analysis showed that oxidative stress induced dramatic changes in gene expression in porcine GCs. A total of 2025 differentially expressed genes (DEGs) were identified, including 1940 DEmRNAs and 55 DEmiRNAs. Functional annotation showed that the DEGs were mainly associated with cell states and function regulation. In addition, multiple hub genes (FOXO1, SOD2, BMP2, DICER1, BCL2L11, FZD4, ssc-miR-424, and ssc-miR-27b) were identified by constructing protein-protein interaction and DEmiRNA-DEmRNA regulatory networks. Furthermore, a gene-pathway-function coregulatory network was established and demonstrated that these hub genes were enriched in FoxO, TGF-β, Wnt, PIK3-Akt, MAPK, and cAMP signaling pathways, which play important roles in regulating cell apoptosis, cell proliferation, stress responses, and hormone secretion. The current research provides a comprehensive perspective of the effects of oxidative stress on porcine GCs and also identifies potential therapeutic targets for oxidative stress-induced female infertility.


The identification of PSEN1 p.Tyr159Ser mutation in a non-canonic early-onset Alzheimer's disease family.

  • Haitao Li‎ et al.
  • Molecular and cellular neurosciences‎
  • 2022‎

More than 300 missense mutations in PSEN1 gene have been correlated to the early-onset Alzheimer's disease (EOAD), but given the high diversity of PS1 (the PSEN1 gene product) substrates and the involvement of PS1 in multiple biological functions, different mutants may represent different EOAD etiologies, and how each mutant contributes to the EOAD remains to be further investigated. Here we report the identification of a novel PSEN1 p.Tyr159Ser in a family with multiple EOAD cases. The mutant PS1 protein (PS1Y159S) was analyzed for its activity in producing amyloid-β (Aβ) and for the efficiency in maturation in vitro. We also screened other mutations and SNPs that may modify the effect of PSEN1 p.Tyr159Ser on AD pathogenesis. The blood samples of the family were collected for whole-exome gene sequencing and analysis. The identified mutant PS1 and several other PS1 mutants were co-expressed with the APP Swedish mutant to compare the effects on APP processing and PS1 maturation.1. The proband and her siblings over 50 years old showed typical AD or MCI symptoms. Exon sequencing identified the p.Tyr159Ser mutation in the PSEN1 gene. As not until the age of 78 did the proband's mother who carried this mutation displayed the symptoms of uncharacterized neuropsychiatry instead of AD, but all the mutation bearing lower generation developed AD or MCI after the age of 50, we also analyzed mutations/SNPs that are different between the mother and the lower generation. By in vitro assays, we found that the Y159S substitution strongly increased Aβ42/Aβ40 ratio and significantly affected PS1 maturation. The newly discovered PSEN1 p.Tyr159Ser is an AD-causing mutation, yet, the carriers are not obligated AD patients. Mutations/SNPs in other gene may modify the effects of this mutation, and the identification of these mutations/SNPs may facilitate the discovery of AD-preventing mechanisms and methods.


ASB7 Is a Novel Regulator of Cytoskeletal Organization During Oocyte Maturation.

  • Yuan Liu‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2020‎

Ankyrin repeat and SOCS box (ASB) family members have a C-terminal SOCS box and an N-terminal ankyrin-related sequence of variable repeats. To date, the roles of ASB family members remain largely unknown. In the present study, by employing knockdown analysis, we investigated the effects of ASB7 on mouse oocyte meiosis. We show that specific depletion of ASB7 disrupts maturational progression and meiotic apparatus. In particular, abnormal spindle, misaligned chromosomes, and loss of cortical actin cap are frequently observed in ASB7-abated oocytes. Consistent with this observation, incidence of aneuploidy is increased in these oocytes. Meanwhile, confocal scanning reveals that loss of ASB7 impairs kinetochore-microtubule interaction and provokes the spindle assembly checkpoint during oocyte meiosis. Furthermore, we find a significant reduction of ASB7 protein in oocytes from aged mice. Importantly, increasing ASB7 expression is capable of partially rescuing the maternal age-induced meiotic defects in oocytes. Together, our data identify ASB7 as a novel player in regulating cytoskeletal organization and discover the potential effects of ASB7 on quality control of aging oocytes.


Loss of HDAC3 contributes to meiotic defects in aged oocytes.

  • Yongfu He‎ et al.
  • Aging cell‎
  • 2019‎

Maternal age-related decline in oocyte quality is associated with meiotic defects, but the underlying mechanisms remain to be explored. Histone deacetylase 3 (HDAC3) has been shown to govern multiple cellular events via deacetylating diverse substrates. We previously found that HDAC3 could promote meiotic apparatus assembly in mouse oocytes. In the present study, we identified a substantial reduction in HDAC3 protein in oocytes from old mice. Importantly, overexpression of HDAC3 in old oocytes not only partially prevents spindle/chromosome disorganization, but also significantly lowers the incidence of aneuploidy. Meanwhile, we noticed the elevated acetylation level of α-tubulin in oocytes derived from old mice. By employing site-directed mutagenesis, we showed that acetylation-mimetic mutant tubulin-K40Q disrupts the kinetochore-microtubule attachments and results in the assembly failure of meiotic apparatus in mouse oocytes. Importantly, forced expression of tubulin-K40R (nonacetylatable-mimetic mutant) was capable of alleviating the defective phenotypes of oocytes from aged mice. To sum up, this study uncovers that loss of HDAC3 represents one potential mechanism mediating the effects of advanced maternal age on oocyte quality.


Transcriptome analysis reveals the genetic basis of skeletal muscle glycolytic potential based on a pig model.

  • Wangjun Wu‎ et al.
  • Gene‎
  • 2021‎

Glycolytic potential (GP) calculated based on glucose, glycogen, glucose-6-phosphate, and lactate contents is a critical factor for multiple meat quality characteristics. However, the genetic basis of glycolytic metabolism is still unclear. In this study, we constructed six RNA-Seq libraries using longissimus dorsi (LD) muscles from pigs divergent for GP phenotypic values and generated the whole genome-wide gene expression profiles. Furthermore, we identified 25,880 known and 220 novel genes from these skeletal muscle libraries, and 222 differentially expressed genes (DEGs) between the higher and lower GP groups. Notably, we found that the Lactate dehydrogenase B (LDHB) and Fructose-2, 6-biphosphatase 3 (PFKFB3) expression levels were higher in the higher GP group than the lower GP group, and positively correlated with GP and lactic acid (LA), and reversely correlated with pH value at 45 min postmortem (pH45min). Besides, LDHB and PFKFB3 expression were positively correlated with drip loss measured at 48 h postmortem (DL48h) and drip loss measured at 24 h postmortem (DL24h). Collectively, we identified a serial of DEGs as the potential key candidate genes affecting GP and found that LDHB and PFKFB3 are closely related to GP and GP-related traits. Our results lay a solid basis for in-depth studies of the regulatory mechanisms on GP and GP-related traits in pigs.


AMPK-PPARγ-Cidec Axis Drives the Fasting-Induced Lipid Droplet Aggregation in the Liver of Obese Mice.

  • Hongqiang Li‎ et al.
  • Frontiers in nutrition‎
  • 2022‎

Intermittent fasting is one of the most common clinical treatments for the obesity, a main risk factor of the metabolic syndrome which can lead to a variety of diseases. Fasting-induced fat mobilization alters the metabolic state of lipid in the liver, predisposing to increase the hepatic lipid droplet aggregation and triglyceride levels. However, the underlying mechanisms regarding the lipid droplet aggregation in the liver after fasting remains elusive. Here, we report that a lipid droplet surface binding protein Cidec (cell death inducing DFFA like effector C) is activated by AMPK to regulate the hepatic lipid droplet fusion following fasting in obese mice. Specifically, we found that lipid droplets were significantly aggregated in the liver of high-fat-diet and ob/ob mice after 16 and 24 h of fasting, accompanied by the dramatically up-regulated expression of Cidec. Consistently, overexpression of Cidec in the AML12 cells resulted in the intracellular lipid droplet aggregation. Furthermore, we showed that fasting caused the up-regulated expression of AMPK, which in turn activated the transcription of Cidec through the transcription factor PPARγ. Altogether, our observations reveal that fasting-induced hepatic lipid droplet aggregation is mediated by the AMPK-activated expression of Cidec via PPARγ, extending our understanding about the molecular mechanism of the impact of fasting on the obesity and providing potential targets for the treatment of human obesity.


Effect of Exogenous Melatonin on the Development of Mice Ovarian Follicles and Follicular Angiogenesis.

  • Jingli Tao‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

In mammalian, the periodic growth and development of ovarian follicles constitutes the physiological basis of female estrus and ovulation. Concomitantly, follicular angiogenesis exerts a pivotal role in the growth of ovarian follicles. Melatonin (N-acetyl-5-methoxytryptamine, Mel), exists in follicle fluid, was suggested to affect the development of follicles and angiogenesis. This research was conducted to investigate the effects and mechanisms of Mel on the development of ovarian follicles and its angiogenesis. In total, 40 ICR mice at age of 3 weeks were allocated into four groups at liberty: control, Mel, FSH and FSH + Mel for a 12-day trial. Ovaries were collected at 8:00 a.m. on Day 13 for detecting the development of ovarian follicles and angiogenesis. Results indicated that Mel promoted the development of ovarian follicles of 50-250 μm (secondary follicles) and periphery angiogenesis, while FSH remarkably increased the number of antral follicles and periphery angiogenesis. Mechanically, Mel and FSH may regulate the expression of VEGF and antioxidant enzymes in different follicular stages. In conclusion, Mel primarily acted on the secondary follicles, while FSH mainly promoted the development of antral follicles. They both conduced to related periphery angiogenesis by increasing the expression of VEGF. These findings may provide new targets for the regulating of follicular development.


DDRGK1, a crucial player of ufmylation system, is indispensable for autophagic degradation by regulating lysosomal function.

  • Yan Cao‎ et al.
  • Cell death & disease‎
  • 2021‎

DDRGK domain-containing protein 1 (DDRGK1) is an important component of the newly discovered ufmylation system and its absence has been reported to induce extensive endoplasmic reticulum (ER) stress. Recently, emerging evidence indicates that the ufmylation system is correlated with autophagy, although the exact mechanism remains largely unknown. To explore the regulation mechanism of DDRGK1 on autophagy, in this study, we established an immortalized mouse embryonic fibroblast (MEF) cell lines harvested from the DDRGK1F/F:ROSA26-CreERT2 mice, in which DDRGK1 depletion can be induced by 4-hydroxytamoxifen (4-OHT) treatment. Here, we show that DDRGK1 deficiency in MEFs has a dual effect on autophagy, which leads to a significant accumulation of autophagosomes. On one hand, it promotes autophagy induction by impairing mTOR signaling; on the other hand, it blocks autophagy degradation by inhibiting autophagosome-lysosome fusion. This dual effect of DDRGK1 depletion on autophagy ultimately aggravates apoptosis in MEFs. Further studies reveal that DDRGK1 loss is correlated with suppressed lysosomal function, including impaired Cathepsin D (CTSD) expression, aberrant lysosomal pH, and v-ATPase accumulation, which might be a potential trigger for impairment in autophagy process. Hence, this study confirms a crucial role of DDRGK1 as an autophagy regulator by controlling lysosomal function. It may provide a theoretical basis for the treatment strategies of various physiological diseases caused by DDRGK1 deficiency.


Hepatic microRNAome reveals potential microRNA-mRNA pairs association with lipid metabolism in pigs.

  • Jingge Liu‎ et al.
  • Asian-Australasian journal of animal sciences‎
  • 2019‎

As one of the most important metabolic organs, the liver plays vital roles in modulating the lipid metabolism. This study was to compare miRNA expression profiles of the Large White liver between two different developmental periods and to identify candidate miRNAs for lipid metabolism.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: