Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 56 papers

Posterior hippocampal regional cerebral blood flow predicts abstinence: a replication study.

  • Bryon Adinoff‎ et al.
  • Addiction biology‎
  • 2017‎

The posterior hippocampus (pHp) plays a major role in the processing and storage of drug-related cues and is linked to striatal-limbic brain circuits involved with craving and drug salience. We have recently reported that increased basal regional cerebral blood flow (rCBF) in a pHp loci, as measured by pseudo-continuous arterial spin labeling magnetic resonance imaging, predicted days to cocaine relapse following residential treatment. In this secondary analysis, we explored whether rCBF in this same pHp region would successfully predict 30-day point prevalence abstinence 60 days following residential treatment in an independent group of previously studied participants with cocaine dependence. rCBF was assessed with single photon emission computerized tomography during a saline infusion in 21 cocaine dependence and 22 healthy control participants. pHp rCBF was significantly higher in those endorsing substance use (n = 10) relative to both abstinent (n = 11) (p < 0.001) and control (p < 0.05) participants. There were no significant differences in measured demographic or clinical variables between the actively using and non-using participants. This replicative finding suggests that heightened pHp activation is a significant predictor of substance use in cocaine-dependent individuals, possibly reflecting a neural susceptibility to continued drug cues.


BiomeNet: a Bayesian model for inference of metabolic divergence among microbial communities.

  • Mahdi Shafiei‎ et al.
  • PLoS computational biology‎
  • 2014‎

Metagenomics yields enormous numbers of microbial sequences that can be assigned a metabolic function. Using such data to infer community-level metabolic divergence is hindered by the lack of a suitable statistical framework. Here, we describe a novel hierarchical Bayesian model, called BiomeNet (Bayesian inference of metabolic networks), for inferring differential prevalence of metabolic subnetworks among microbial communities. To infer the structure of community-level metabolic interactions, BiomeNet applies a mixed-membership modelling framework to enzyme abundance information. The basic idea is that the mixture components of the model (metabolic reactions, subnetworks, and networks) are shared across all groups (microbiome samples), but the mixture proportions vary from group to group. Through this framework, the model can capture nested structures within the data. BiomeNet is unique in modeling each metagenome sample as a mixture of complex metabolic systems (metabosystems). The metabosystems are composed of mixtures of tightly connected metabolic subnetworks. BiomeNet differs from other unsupervised methods by allowing researchers to discriminate groups of samples through the metabolic patterns it discovers in the data, and by providing a framework for interpreting them. We describe a collapsed Gibbs sampler for inference of the mixture weights under BiomeNet, and we use simulation to validate the inference algorithm. Application of BiomeNet to human gut metagenomes revealed a metabosystem with greater prevalence among inflammatory bowel disease (IBD) patients. Based on the discriminatory subnetworks for this metabosystem, we inferred that the community is likely to be closely associated with the human gut epithelium, resistant to dietary interventions, and interfere with human uptake of an antioxidant connected to IBD. Because this metabosystem has a greater capacity to exploit host-associated glycans, we speculate that IBD-associated communities might arise from opportunist growth of bacteria that can circumvent the host's nutrient-based mechanism for bacterial partner selection.


Detecting static and dynamic differences between eyes-closed and eyes-open resting states using ASL and BOLD fMRI.

  • Qihong Zou‎ et al.
  • PloS one‎
  • 2015‎

Resting-state fMRI studies have increasingly focused on multi-contrast techniques, such as BOLD and ASL imaging. However, these techniques may reveal different aspects of brain activity (e.g., static vs. dynamic), and little is known about the similarity or disparity of these techniques in detecting resting-state brain activity. It is therefore important to assess the static and dynamic characteristics of these fMRI techniques to guide future applications. Here we acquired fMRI data while subjects were in eyes-closed (EC) and eyes-open (EO) states, using both ASL and BOLD techniques, at two research centers (NIDA and HNU). Static brain activity was calculated as voxel-wise mean cerebral blood flow (CBF) using ASL, i.e., CBF-mean, while dynamic activity was measured by the amplitude of low frequency fluctuations (ALFF) of BOLD, i.e., BOLD-ALFF, at both NIDA and HNU, and CBF, i.e., CBF-ALFF, at NIDA. We showed that mean CBF was lower under EC than EO in the primary visual cortex, while BOLD-ALFF was higher under EC in the primary somatosensory cortices extending to the primary auditory cortices and lower in the lateral occipital area. Interestingly, mean CBF and BOLD-ALFF results overlapped at the visual cortex to a very small degree. Importantly, these findings were largely replicated by the HNU dataset. State differences found by CBF-ALFF were located in the primary auditory cortices, which were generally a subset of BOLD-ALFF and showed no spatial overlap with CBF-mean. In conclusion, static brain activity measured by mean CBF and dynamic brain activity measured by BOLD- and CBF-ALFF may reflect different aspects of resting-state brain activity and a combination of ASL and BOLD may provide complementary information on the biophysical and physiological processes of the brain.


Polymorphisms in the vascular endothelial growth factor gene and the risk of diabetic retinopathy in Chinese patients with type 2 diabetes.

  • Xiufen Yang‎ et al.
  • Molecular vision‎
  • 2011‎

To investigate whether single nucleotide polymorphisms (SNPs) in the vascular endothelial growth factor (VEGF) gene are associated with diabetic retinopathy (DR) in a cohort of Chinese patients with type 2 diabetes mellitus (T2DM).


A robust and high-throughput Cre reporting and characterization system for the whole mouse brain.

  • Linda Madisen‎ et al.
  • Nature neuroscience‎
  • 2010‎

The Cre/lox system is widely used in mice to achieve cell-type-specific gene expression. However, a strong and universally responding system to express genes under Cre control is still lacking. We have generated a set of Cre reporter mice with strong, ubiquitous expression of fluorescent proteins of different spectra. The robust native fluorescence of these reporters enables direct visualization of fine dendritic structures and axonal projections of the labeled neurons, which is useful in mapping neuronal circuitry, imaging and tracking specific cell populations in vivo. Using these reporters and a high-throughput in situ hybridization platform, we are systematically profiling Cre-directed gene expression throughout the mouse brain in several Cre-driver lines, including new Cre lines targeting different cell types in the cortex. Our expression data are displayed in a public online database to help researchers assess the utility of various Cre-driver lines for cell-type-specific genetic manipulation.


Combination of betulinic acid with diazen-1-ium-1,2-diolate nitric oxide moiety donating a novel anticancer candidate.

  • Laiyin Zhang‎ et al.
  • OncoTargets and therapy‎
  • 2018‎

Betulinic acid (BA) is a complex lupane triterpenoid with unique antineoplastic activity. However, its antiproliferative activity is far from satisfaction. In order to improve its anticancer efficacy, betulinic acid was conjugated with a nitric oxide (NO)-releasing moiety to get a novel hybrid, BA-78.


TGF-β receptor mutations and clinical prognosis in Chinese pediatric patients with idiopathic/hereditary pulmonary arterial hypertension.

  • Xinyu Zhang‎ et al.
  • Pulmonary circulation‎
  • 2022‎

The relationship between clinical prognosis and transforming growth factor-β (TGF-β) receptor mutations in Chinese pediatric patients with idiopathic/hereditary pulmonary arterial hypertension (IPAH/HPAH) remains unclear. We retrospectively studied the clinical characteristics and outcomes of pediatric patients with IPAH/HPAH who visited our Hospital from September 2008 to December 2020. One hundred and five pediatric patients with IPAH/HPAH were included, 46 of whom carried TGF-β receptor mutations with a mean age at diagnosis of 82.8 ± 52.7 months, and 67 of them underwent right cardiac catheterization examinations and acute vasodilator testing. The result showed that mutation carriers demonstrated higher pulmonary vascular resistance (p = 0.012), higher right atrial pressure (p = 0.026), and lower cardiac index (p = 0.003). The 1-, 2-, and 3-year survival rates of mutation carriers were 79.4%, 61.5% and 55.6%, respectively, compared with 96.6%, 91.1%, and 85.4% for nonmutation carriers (p = 0.0001). The prognosis of mutation carriers was significantly worse than that of nonmutation carriers. TGF-β receptor gene mutation is an independent risk factor for death (p = 0.049, odd raito = 3.809, 95% confidence interval 1.006-14.429). In conclusion, TGF-β receptor mutation is an important genetic factor for the onset of IPAH/PAH in Chinese pediatric patients. Those who carrying TGF-β receptor mutations have a poor clinical prognosis. Therefore, TGF-β receptor gene screening for pediatric patients with PAH and more aggressive treatment for mutation carriers are recommended.


Cardiovascular Complications of Down Syndrome: Scoping Review and Expert Consensus.

  • Konstantinos Dimopoulos‎ et al.
  • Circulation‎
  • 2023‎

Cardiovascular disease is a leading cause of morbidity and mortality in individuals with Down syndrome. Congenital heart disease is the most common cardiovascular condition in this group, present in up to 50% of people with Down syndrome and contributing to poor outcomes. Additional factors contributing to cardiovascular outcomes include pulmonary hypertension; coexistent pulmonary, endocrine, and metabolic diseases; and risk factors for atherosclerotic disease. Moreover, disparities in the cardiovascular care of people with Down syndrome compared with the general population, which vary across different geographies and health care systems, further contribute to cardiovascular mortality; this issue is often overlooked by the wider medical community. This review focuses on the diagnosis, prevalence, and management of cardiovascular disease encountered in people with Down syndrome and summarizes available evidence in 10 key areas relating to Down syndrome and cardiac disease, from prenatal diagnosis to disparities in care in areas of differing resource availability. All specialists and nonspecialist clinicians providing care for people with Down syndrome should be aware of best clinical practice in all aspects of care of this distinct population.


Orexin-A Reverse Bone Mass Loss Induced by Chronic Intermittent Hypoxia Through OX1R-Nrf2/HIF-1α Pathway.

  • Hong Gu‎ et al.
  • Drug design, development and therapy‎
  • 2022‎

Recent studies suggest that there is a potential connection between obstructive sleep apnea (OSA) and osteoporosis through dysregulation of bone metabolism. Orexin-A, a neuroprotective peptide secreted by the hypothalamus, is at a lower level in the plasma of OSA patients, which regulates appetite, energy expenditure and sleep-wake states. However, the protective effect of orexin-A on bone metabolism in OSA is unclear.


Association between metabolic status and gut microbiome in obese populations.

  • Qiang Zeng‎ et al.
  • Microbial genomics‎
  • 2021‎

Despite that obesity is associated with many metabolic diseases, a significant proportion (10-30 %) of obese individuals is recognized as 'metabolically healthy obeses' (MHOs). The aim of the current study is to characterize the gut microbiome for MHOs as compared to 'metabolically unhealthy obeses' (MUOs). We compared the gut microbiome of 172 MHO and 138 MUO individuals from Chongqing (China) (inclined to eat red meat and food with a spicy taste), and performed validation with selected biomarkers in 40 MHOs and 33 MUOs from Quanzhou (China) (inclined to eat seafood and food with a light/bland taste). The genera Alistipes, Faecalibacterium and Odoribacter had increased abundance in both Chongqing and Quanzhou MHOs. We also observed different microbial functions in MUOs compared to MHOs, including an increased abundance of genes associated with glycan biosynthesis and metabolism. In addition, the microbial gene markers identified from the Chongqing cohort bear a moderate accuracy [AUC (area under the operating characteristic curve)=0.69] for classifying MHOs distinct from MUOs in the Quanzhou cohort. These findings indicate that gut microbiome is significantly distinct between MHOs and MUOs, implicating the potential of the gut microbiome in stratification and refined management of obesity.


Connecting single-cell transcriptomes to projectomes in mouse visual cortex.

  • Staci A Sorensen‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

The mammalian brain is composed of diverse neuron types that play different functional roles. Recent single-cell RNA sequencing approaches have led to a whole brain taxonomy of transcriptomically-defined cell types, yet cell type definitions that include multiple cellular properties can offer additional insights into a neuron's role in brain circuits. While the Patch-seq method can investigate how transcriptomic properties relate to the local morphological and electrophysiological properties of cell types, linking transcriptomic identities to long-range projections is a major unresolved challenge. To address this, we collected coordinated Patch-seq and whole brain morphology data sets of excitatory neurons in mouse visual cortex. From the Patch-seq data, we defined 16 integrated morpho-electric-transcriptomic (MET)-types; in parallel, we reconstructed the complete morphologies of 300 neurons. We unified the two data sets with a multi-step classifier, to integrate cell type assignments and interrogate cross-modality relationships. We find that transcriptomic variations within and across MET-types correspond with morphological and electrophysiological phenotypes. In addition, this variation, along with the anatomical location of the cell, can be used to predict the projection targets of individual neurons. We also shed new light on infragranular cell types and circuits, including cell-type-specific, interhemispheric projections. With this approach, we establish a comprehensive, integrated taxonomy of excitatory neuron types in mouse visual cortex and create a system for integrated, high-dimensional cell type classification that can be extended to the whole brain and potentially across species.


Candidate gene association study for diabetic retinopathy in Chinese patients with type 2 diabetes.

  • Xiufen Yang‎ et al.
  • Molecular vision‎
  • 2014‎

To investigate whether variants in a set of eight candidate genes are associated with diabetic retinopathy (DR) in a cohort of Chinese patients with type 2 diabetes mellitus (T2DM).


Diabetes mellitus and risk of age-related macular degeneration: a systematic review and meta-analysis.

  • Xue Chen‎ et al.
  • PloS one‎
  • 2014‎

Age-related macular degeneration (AMD) is a major cause of severe vision loss in elderly people. Diabetes mellitus is a common endocrine disorder with serious consequences, and diabetic retinopathy (DR) is the main ophthalmic complication. DR and AMD are different diseases and we seek to explore the relationship between diabetes and AMD. MEDLINE, EMBASE, and the Cochrane Library were searched for potentially eligible studies. Studies based on longitudinal cohort, cross-sectional, and case-control associations, reporting evaluation data of diabetes as an independent factor for AMD were included. Reports of relative risks (RRs), hazard ratios (HRs), odds ratio (ORs), or evaluation data of diabetes as an independent factor for AMD were included. Review Manager and STATA were used for the meta-analysis. Twenty four articles involving 27 study populations were included for meta-analysis. In 7 cohort studies, diabetes was shown to be a risk factor for AMD (OR, 1.05; 95% CI, 1.00-1.14). Results of 9 cross-sectional studies revealed consistent association of diabetes with AMD (OR, 1.21; 95% CI, 1.00-1.45), especially for late AMD (OR, 1.48; 95% CI, 1.44-1.51). Similar association was also detected for AMD (OR, 1.29; 95% CI, 1.13-1.49) and late AMD (OR, 1.16; 95% CI, 1.11-1.21) in 11 case-control studies. The pooled ORs for risk of neovascular AMD (nAMD) were 1.10 (95% CI, 0.96-1.26), 1.48 (95% CI, 1.44-1.51), and 1.15 (95% CI, 1.11-1.21) from cohort, cross-sectional and case-control studies, respectively. No obvious divergence existed among different ethnic groups. Therefore, we find diabetes a risk factor for AMD, stronger for late AMD than earlier stages. However, most of the included studies only adjusted for age and sex; we thus cannot rule out confounding as a potential explanation for the association. More well-designed prospective cohort studies are still warranted to further examine the association.


Loss of Microtubule-Associated Protein 2 Immunoreactivity Linked to Dendritic Spine Loss in Schizophrenia.

  • Micah A Shelton‎ et al.
  • Biological psychiatry‎
  • 2015‎

Microtubule-associated protein 2 (MAP2) is a neuronal protein that plays a role in maintaining dendritic structure through its interaction with microtubules. In schizophrenia (Sz), numerous studies have revealed that the typically robust immunoreactivity (IR) of MAP2 is significantly reduced across several cortical regions. The relationship between MAP2-IR reduction and lower dendritic spine density, which is frequently reported in Sz, has not been explored in previous studies, and MAP2-IR loss has not been investigated in the primary auditory cortex (Brodmann area 41), a site of conserved pathology in Sz.


Phylogenetic Clustering of Genes Reveals Shared Evolutionary Trajectories and Putative Gene Functions.

  • Chaoyue Liu‎ et al.
  • Genome biology and evolution‎
  • 2018‎

Homologous genes in prokaryotes can be described using phylogenetic profiles which summarize their patterns of presence or absence across a set of genomes. Phylogenetic profiles have been used for nearly twenty years to cluster genes based on measures such as the Euclidean distance between profile vectors. However, most approaches do not take into account the phylogenetic relationships amongst the profiled genomes, and overrepresentation of certain taxonomic groups (i.e., pathogenic species with many sequenced representatives) can skew the interpretation of profiles. We propose a new approach that uses a coevolutionary method defined by Pagel to account for the phylogenetic relationships amongst target organisms, and a hierarchical-clustering approach to define sets of genes with common distributions across the organisms. The clusters we obtain using our method show greater evidence of phylogenetic and functional clustering than a recently published approach based on hidden Markov models. Our clustering method identifies sets of amino-acid biosynthesis genes that constitute cohesive pathways, and motility/chemotaxis genes with common histories of descent and lateral gene transfer.


A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing.

  • Linda Madisen‎ et al.
  • Nature neuroscience‎
  • 2012‎

Cell type-specific expression of optogenetic molecules allows temporally precise manipulation of targeted neuronal activity. Here we present a toolbox of four knock-in mouse lines engineered for strong, Cre-dependent expression of channelrhodopsins ChR2-tdTomato and ChR2-EYFP, halorhodopsin eNpHR3.0 and archaerhodopsin Arch-ER2. All four transgenes mediated Cre-dependent, robust activation or silencing of cortical pyramidal neurons in vitro and in vivo upon light stimulation, with ChR2-EYFP and Arch-ER2 demonstrating light sensitivity approaching that of in utero or virally transduced neurons. We further show specific photoactivation of parvalbumin-positive interneurons in behaving ChR2-EYFP reporter mice. The robust, consistent and inducible nature of our ChR2 mice represents a significant advance over previous lines, and the Arch-ER2 and eNpHR3.0 mice are to our knowledge the first demonstration of successful conditional transgenic optogenetic silencing. When combined with the hundreds of available Cre driver lines, this optimized toolbox of reporter mice will enable widespread investigations of neural circuit function with unprecedented reliability and accuracy.


Artificial Neurons Based on Ag/V2C/W Threshold Switching Memristors.

  • Yu Wang‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2021‎

Artificial synapses and neurons are two critical, fundamental bricks for constructing hardware neural networks. Owing to its high-density integration, outstanding nonlinearity, and modulated plasticity, memristors have attracted emerging attention on emulating biological synapses and neurons. However, fabricating a low-power and robust memristor-based artificial neuron without extra electrical components is still a challenge for brain-inspired systems. In this work, we demonstrate a single two-dimensional (2D) MXene(V2C)-based threshold switching (TS) memristor to emulate a leaky integrate-and-fire (LIF) neuron without auxiliary circuits, originating from the Ag diffusion-based filamentary mechanism. Moreover, our V2C-based artificial neurons faithfully achieve multiple neural functions including leaky integration, threshold-driven fire, self-relaxation, and linear strength-modulated spike frequency characteristics. This work demonstrates that three-atom-type MXene (e.g., V2C) memristors may provide an efficient method to construct the hardware neuromorphic computing systems.


Efficacy and Safety of Abiraterone Acetate and Enzalutamide for the Treatment of Metastatic Castration-Resistant Prostate Cancer: A Systematic Review and Meta-Analysis.

  • ZhenHeng Wei‎ et al.
  • Frontiers in oncology‎
  • 2021‎

The androgen receptor-targeting drugs abiraterone acetate and enzalutamide have shown positive results as treatments for metastatic castration-resistant prostate cancer (mCRPC). Therefore, a meta-analysis was conducted to compare the efficacy and safety of abiraterone acetate and enzalutamide in patients with mCRPC.


Discrepant gut microbiota markers for the classification of obesity-related metabolic abnormalities.

  • Qiang Zeng‎ et al.
  • Scientific reports‎
  • 2019‎

The gut microbiota (GM) is related to obesity and other metabolic diseases. To detect GM markers for obesity in patients with different metabolic abnormalities and investigate their relationships with clinical indicators, 1,914 Chinese adults were enrolled for 16S rRNA gene sequencing in this retrospective study. Based on GM composition, Random forest classifiers were constructed to screen the obesity patients with (Group OA) or without metabolic diseases (Group O) from healthy individuals (Group H), and high accuracies were observed for the discrimination of Group O and Group OA (areas under the receiver operating curve (AUC) equal to 0.68 and 0.76, respectively). Furthermore, six GM markers were shared by obesity patients with various metabolic disorders (Bacteroides, Parabacteroides, Blautia, Alistipes, Romboutsia and Roseburia). As for the discrimination with Group O, Group OA exhibited low accuracy (AUC = 0.57). Nonetheless, GM classifications to distinguish between Group O and the obese patients with specific metabolic abnormalities were not accurate (AUC values from 0.59 to 0.66). Common biomarkers were identified for the obesity patients with high uric acid, high serum lipids and high blood pressure, such as Clostridium XIVa, Bacteroides and Roseburia. A total of 20 genera were associated with multiple significant clinical indicators. For example, Blautia, Romboutsia, Ruminococcus2, Clostridium sensu stricto and Dorea were positively correlated with indicators of bodyweight (including waistline and body mass index) and serum lipids (including low density lipoprotein, triglyceride and total cholesterol). In contrast, the aforementioned clinical indicators were negatively associated with Bacteroides, Roseburia, Butyricicoccus, Alistipes, Parasutterella, Parabacteroides and Clostridium IV. Generally, these biomarkers hold the potential to predict obesity-related metabolic abnormalities, and interventions based on these biomarkers might be beneficial to weight loss and metabolic risk improvement.


SRSF1 modulates PTPMT1 alternative splicing to regulate lung cancer cell radioresistance.

  • Junxiu Sheng‎ et al.
  • EBioMedicine‎
  • 2018‎

Radioresistance is the major cause of cancer treatment failure. Additionally, splicing dysregulation plays critical roles in tumorigenesis. However, the involvement of alternative splicing in resistance of cancer cells to radiotherapy remains elusive. We sought to investigate the key role of the splicing factor SRSF1 in the radioresistance in lung cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: