2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 126 papers

Development of a PCR-Based Reverse Genetics System for an Attenuated Duck Tembusu Virus Strain.

  • Xiaogang Wu‎ et al.
  • PloS one‎
  • 2016‎

The infectious disease caused by the duck Tembusu virus (DTMUV) has resulted in massive economic losses to the Chinese duck industry in China since 2010. Research on the molecular basis of DTMUV pathogenicity has been hampered by the lack of a reliable reverse genetics system for this virus. Here we developed a PCR-based reverse genetics system with high fidelity for the attenuated DTMUV strain FX2010-180P. The rescued virus was characterized by using both indirect immunofluorescence assays (IFA) and whole genome sequencing. The rescued virus (rFX2010-180P) grew to similar titers as compared with the wild-type virus in DF-1 cells, and had similar replication and immunogenicity properties in ducks. To determine whether exogenous proteins could be expressed from DTMUV, both an internal ribosomal entry site (IRES) and the enhanced green fluorescent protein (eGFP) gene were introduced between the NS5 gene and the 3' non-coding sequence of FX2010-180P. A recombinant DTMUV expressing eGFP was rescued, but eGFP expression was unstable after 4 passages in DF-1 cells due to a deletion of 1,294 nucleotides. The establishment of a reliable reverse genetics system for FX2010-180P provides a foundation for future studies of DTMUV.


Synthetic cytotoxicity: digenic interactions with TEL1/ATM mutations reveal sensitivity to low doses of camptothecin.

  • Xuesong Li‎ et al.
  • Genetics‎
  • 2014‎

Many tumors contain mutations that confer defects in the DNA-damage response and genome stability. DNA-damaging agents are powerful therapeutic tools that can differentially kill cells with an impaired DNA-damage response. The response to DNA damage is complex and composed of a network of coordinated pathways, often with a degree of redundancy. Tumor-specific somatic mutations in DNA-damage response genes could be exploited by inhibiting the function of a second gene product to increase the sensitivity of tumor cells to a sublethal concentration of a DNA-damaging therapeutic agent, resulting in a class of conditional synthetic lethality we call synthetic cytotoxicity. We used the Saccharomyces cerevisiae nonessential gene-deletion collection to screen for synthetic cytotoxic interactions with camptothecin, a topoisomerase I inhibitor, and a null mutation in TEL1, the S. cerevisiae ortholog of the mammalian tumor-suppressor gene, ATM. We found and validated 14 synthetic cytotoxic interactions that define at least five epistasis groups. One class of synthetic cytotoxic interaction was due to telomere defects. We also found that at least one synthetic cytotoxic interaction was conserved in Caenorhabditis elegans. We have demonstrated that synthetic cytotoxicity could be a useful strategy for expanding the sensitivity of certain tumors to DNA-damaging therapeutics.


Long non-coding RNA HNF1A-AS1 promotes proliferation and suppresses apoptosis of bladder cancer cells through upregulating Bcl-2.

  • Yonghao Zhan‎ et al.
  • Oncotarget‎
  • 2017‎

Emerging evidences have indicated that long non-coding RNAs (lncRNAs) are pivotal regulators of tumor development and progression. HNF1A-AS1 (HNF1A antisense RNA 1, C12 or f27) is a novel long non-coding RNA that acts as a potential biomarker and is involved in development and progression of several cancers. Nevertheless, we know nothing about the clinical significance and molecular mechanism of HNF1A-AS1 in bladder cancer. In this study, we found that HNF1A-AS1 is significantly up-regulated in bladder cancer. Further experiments had demonstrated that silencing HNF1A-AS1 in bladder cancer cells could inhibit the proliferation and induce apoptosis. Mechanistically, we found down-regulated of HNF1A-AS1 increased the expression of miR-30b-5p and subsequently inhibited the expression of Bcl-2, in a ceRNA-dependent way. Moreover, knockdown of miR-30b-5p reversed cell proliferation inhibition and cell apoptosis induced by silencing HNF1A-AS1. In conclusions, we demonstrated that HNF1A-AS1 plays an important regulatory role in bladder cancer and shed new light on lncRNA-directed diagnostic and therapeutics in bladder cancer.


A conserved role for atlastin GTPases in regulating lipid droplet size.

  • Robin W Klemm‎ et al.
  • Cell reports‎
  • 2013‎

Lipid droplets (LDs) are the major fat storage organelles in eukaryotic cells, but how their size is regulated is unknown. Using genetic screens in C. elegans for LD morphology defects in intestinal cells, we found that mutations in atlastin, a GTPase required for homotypic fusion of endoplasmic reticulum (ER) membranes, cause not only ER morphology defects, but also a reduction in LD size. Similar results were obtained after depletion of atlastin or expression of a dominant-negative mutant, whereas overexpression of atlastin had the opposite effect. Atlastin depletion in Drosophila fat bodies also reduced LD size and decreased triglycerides in whole animals, sensitizing them to starvation. In mammalian cells, co-overexpression of atlastin-1 and REEP1, a paralog of the ER tubule-shaping protein DP1/REEP5, generates large LDs. The effect of atlastin-1 on LD size correlates with its activity to promote membrane fusion in vitro. Our results indicate that atlastin-mediated fusion of ER membranes is important for LD size regulation.


Kinetics of apoptosis and expression of apoptosis-related proteins in rat CA3 hippocampus cells after experimental diffuse brain injury.

  • Jianliang Chen‎ et al.
  • Cell biochemistry and biophysics‎
  • 2013‎

The present study examined kinetics of apoptosis and expression of apoptosis-related proteins Bcl-2, Bax, and caspase-3 in the CA3 hippocampus cells after diffuse brain injury (DBI) induced experimentally in rats. Percentage of apoptotic cells and expressions of above proteins were examined by flow cytometry and immunohistochemistry. Substantial neuronal apoptosis was documented in the CA3 hippocampus cells after DBI (22.26 ± 2.97% at 72 h after DBI vs. 2.92 ± 0.88% in sham-operated animals). Expression of Bc1-2 decreased, while expression of Bax and caspase-3 increased after DBI, with caspase-3 expression peaking after that of Bax (72 vs. 48 h, respectively). Further, the Bc1-2/Bax expression ratio decreased prior to increase of caspase-3 expression. In conclusion, cell apoptosis and altered expressions of Bcl-2, Bax, and caspase-3 are present in the CA3 region of hippocampus after experimental DBI. Changes in the Bc1-2/Bax expression ratio may facilitate activation of caspase-3 and aggravate neuronal apoptosis after brain injury.


Hypericin-mediated sonodynamic therapy induces autophagy and decreases lipids in THP-1 macrophage by promoting ROS-dependent nuclear translocation of TFEB.

  • Xuesong Li‎ et al.
  • Cell death & disease‎
  • 2016‎

Lipid catabolism disorder is the primary cause of atherosclerosis. Transcription factor EB (TFEB) prevents atherosclerosis by activating macrophage autophagy to promote lipid degradation. Hypericin-mediated sonodynamic therapy (HY-SDT) has been proved non-invasively inducing THP-1-derived macrophage apoptosis; however, it is unknown whether macrophage autophagy could be triggered by HY-SDT to influence cellular lipid catabolism via regulating TFEB. Here, we report that HY-SDT resulted in the time-dependent THP-1-derived macrophage autophagy activation through AMPK/AKT/mTOR pathway. Besides, TFEB nuclear translocation in macrophage was triggered by HY-SDT to promote autophagy activation and lysosome regeneration which enhanced lipid degradation in response to atherogenic lipid stressors. Moreover, following HY-SDT, the ABCA1 expression level was increased to promote lipid efflux in macrophage, and the expression levels of CD36 and SR-A were decreased to inhibit lipid uptake, both of which were prevented by TFEB knockdown. These results indicated that TFEB nuclear translocation activated by HY-SDT was not only the key regulator of autophagy activation and lysosome regeneration in macrophage to promote lipolysis, but also had a crucial role in reverse cholesterol transporters to decrease lipid uptake and increase lipid efflux. Reactive oxygen species (ROS) were adequately generated in macrophage by HY-SDT. Further, ROS scavenger N-acetyl-l-cysteine abolished HY-SDT-induced TFEB nuclear translocation and autophagy activation, implying that ROS were the primary upstream factors responsible for these effects during HY-SDT. In summary, our data indicate that HY-SDT decreases lipid content in macrophage by promoting ROS-dependent nuclear translocation of TFEB to influence consequent autophagy activation and cholesterol transporters. Thus, HY-SDT may be beneficial for atherosclerosis via TFEB regulation to ameliorate lipid overload in atherosclerotic plaques.


BRD4 contributes to LPS-induced macrophage senescence and promotes progression of atherosclerosis-associated lipid uptake.

  • Hui Wang‎ et al.
  • Aging‎
  • 2020‎

Aging is closely associated with atherosclerosis. Macrophages accumulate in atherosclerotic lesions contributing to the development and progression of atherosclerosis. Although atherosclerotic lesions are known to contain senescent cells, the mechanism underlying the formation of senescent macrophages during atherosclerosis is still unclear. In this study, macrophages with different origins were collected, including THP-1 macrophages, telomerase reverse transcriptase knock out (Tert-/-) mouse peritoneal macrophages, and human peripheral blood mononuclear cells (PBMCs). We found Lipopolysaccharide (LPS) could induce the formation of senescent macrophages, which was typified by the morphological changes, senescence-associated secretory phenotype (SASP) secretory, and persistent DNA damage response. Mechanistically, bromodomain-containing protein 4 (BRD4), a chromosomal binding protein related to gene expression, was found to play a key role in the pathological process, which could offer new therapeutic perspectives. Inhibition of BRD4 by siBRD4 or inhibitors such as JQ-1 or I-BET762 prevented the aging of macrophages and lipid accumulation in the LPS-induced senescent macrophages by decreasing expression of SASP in autocrine and paracrine senescence. These findings have significant implications for the understanding of the pathobiology of age-associated diseases and may guide future studies on targeted clinical drug therapy.


Effect of icariside II and metformin on penile erectile function, glucose metabolism, reaction oxygen species, superoxide dismutase, and mitochondrial autophagy in type 2 diabetic rats with erectile dysfunction.

  • Jian Zhang‎ et al.
  • Translational andrology and urology‎
  • 2020‎

Icariside II (ICAII) is a flavonoid isolated from herb Epimedium that has been shown to improve erectile function in rats. However, ICAII's underlying mechanism remains unclear.


A time-space conversion method for material synthesis research.

  • Yuting Hou‎ et al.
  • iScience‎
  • 2021‎

Research on material synthesis is mostly performed through batch by batch testing with each corresponding to a set of parameters and a reaction time. Concurrent experiments that allow for multiple loadings throughout an inhomogeneous reaction zone provide a way to obtain high-throughput results. Here, a time-space conversion method is proposed. By sequentially passing a number of identical objects through a reaction zone, a significant diversity of reactions in one batch can be achieved depending on the spatial distribution and changes with time of the reaction zone. In particular, when the reaction zone is steady, the evolution of a reaction can be associated with the objects at their corresponding reaction stage. This greatly improves the efficiency and accuracy of research on material synthesis kinetics. This method may initiate a new wave of material synthesis research and accelerate the development of material science.


Molecular and Antigenic Characterization of Avian H9N2 Viruses in Southern China.

  • Wanwan Yan‎ et al.
  • Microbiology spectrum‎
  • 2022‎

The H9N2 subtype avian influenza virus (AIV) has become endemic in poultry globally; however due to its low pathogenicity, it is not under primary surveillance and control in many countries. Recent reports of human infection caused by H9N2 AIV has increased public concern. This study investigated the genetic and antigenic characteristics of H9N2 AIV isolated from local markets in nine provinces in Southern China from 2013 to 2018. We detected an increasing annual isolation rate of H9N2 AIV. Phylogenetic analyses of hemagglutinin (HA) genes suggests that isolated strains were rooted in BJ94 lineage but have evolved into new subgroups (II and III), which derived from subgroup I. The estimated substitution rate of the subgroup III strains was 6.23 × 10-3 substitutions/site/year, which was 1.5-fold faster than that of the average H9N2 HA rate (3.95 × 10-3 substitutions/site/year). Based on the antigenic distances, subgroup II and III strains resulted in two clear antigenic clusters 2 and 3, separated from the vaccine strain F98, cluster 1. New antigenic properties of subgroup III viruses were associated with 11 amino acid changes in the HA protein, suggesting antigenic drift in H9N2 viruses. Our phylogenetic and antigenic analyses of the H9N2 strains circulating in local markets in Southern China provide new insights on the antigenic diversification of H9N2 viruses. IMPORTANCE The H9N2 low pathogenicity avian influenza (LPAI) virus has become endemic in poultry globally. In several Asian countries, vaccination against H9N2 avian influenza virus (AIV) was approved to reduce economic losses in the poultry industry. However, surveillance programs initiated after the introduction of vaccination identified the persistence of H9N2 AIV in poultry (especially in chicken in South Korea and China). Recent reports of human infection caused by H9N2 AIV has increased public concern. Surveillance of H9N2 circulating in poultry in the fields or markets was essential to update the vaccination strategies. This study investigated the genetic and antigenic characteristics of H9N2 AIVs isolated from local markets in nine provinces in Southern China from 2013 to 2018. The discovery of mutations in the hemagglutinin (HA) gene that result in antigenic changes provides a baseline reference for evolutionary studies of H9N2 viruses and vaccination strategies in poultry.


Metformin and exenatide upregulate hepatocyte nuclear factor-4α, sex hormone binding globulin levels and improve hepatic triglyceride deposition in polycystic ovary syndrome with insulin resistance rats.

  • Chuan Xing‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2021‎

To explore the efficacy and underlying mechanisms of metformin and exenatide in reversing reproductive and metabolic disturbances in letrozole combined with high-fat diet-induced polycystic ovary syndrome (PCOS) rats.


The PB1 gene from H9N2 avian influenza virus showed high compatibility and increased mutation rate after reassorting with a human H1N1 influenza virus.

  • Hongrui Cui‎ et al.
  • Virology journal‎
  • 2022‎

Reassortment between human and avian influenza viruses (AIV) may result in novel viruses with new characteristics that may threaten human health when causing the next flu pandemic. A particular risk may be posed by avian influenza viruses of subtype H9N2 that are currently massively circulating in domestic poultry in Asia and have been shown to infect humans. In this study, we investigate the characteristics and compatibility of a human H1N1 virus with avian H9N2 derived genes.


Incorporating the image formation process into deep learning improves network performance.

  • Yue Li‎ et al.
  • Nature methods‎
  • 2022‎

We present Richardson-Lucy network (RLN), a fast and lightweight deep learning method for three-dimensional fluorescence microscopy deconvolution. RLN combines the traditional Richardson-Lucy iteration with a fully convolutional network structure, establishing a connection to the image formation process and thereby improving network performance. Containing only roughly 16,000 parameters, RLN enables four- to 50-fold faster processing than purely data-driven networks with many more parameters. By visual and quantitative analysis, we show that RLN provides better deconvolution, better generalizability and fewer artifacts than other networks, especially along the axial dimension. RLN outperforms classic Richardson-Lucy deconvolution on volumes contaminated with severe out of focus fluorescence or noise and provides four- to sixfold faster reconstructions of large, cleared-tissue datasets than classic multi-view pipelines. We demonstrate RLN's performance on cells, tissues and embryos imaged with widefield-, light-sheet-, confocal- and super-resolution microscopy.


Diagnostic performance and prognostic value of preoperative 18F-FDG PET/CT in renal cell carcinoma patients with venous tumor thrombus.

  • Silu Chen‎ et al.
  • Cancer imaging : the official publication of the International Cancer Imaging Society‎
  • 2022‎

To observe the diagnostic efficacy of preoperative fluorine-18 fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) upon venous tumor thrombus (VTT) in patients with renal cell carcinoma (RCC), and investigate the prognostic value of imaging parameters integrated with clinicopathological characteristics in patients with VTT after nephrectomy with tumor thrombectomy.


Dynamic changes in thalamic connectivity following stress and its association with future depression severity.

  • Xue Zhang‎ et al.
  • Brain and behavior‎
  • 2019‎

Tracking stress-induced brain activity and connectivity dynamically and examining activity/connectivity-associated recovery ability after stress might be an effective way of detecting stress vulnerability.


The Significance of Preoperative Serum Sodium and Hemoglobin in Outcomes of Upper Tract Urothelial Carcinoma: Multi-Center Analysis Between China and the United States.

  • Dong Fang‎ et al.
  • Cancer management and research‎
  • 2020‎

To analyze the effect of preoperative serum sodium and hemoglobin on oncologic outcomes in upper tract urothelial carcinoma (UTUC) based on a multi-center cohort from China and the United States (U.S.).


DNA methylation subtypes guiding prognostic assessment and linking to responses the DNA methyltransferase inhibitor SGI-110 in urothelial carcinoma.

  • Juan Li‎ et al.
  • BMC medicine‎
  • 2022‎

At present, the extent and clinical relevance of epigenetic differences between upper tract urothelial carcinoma (UTUC) and urothelial carcinoma of the bladder (UCB) remain largely unknown. Here, we conducted a study to describe the global DNA methylation landscape of UTUC and UCB and to address the prognostic value of DNA methylation subtype and responses to the DNA methyltransferase inhibitor SGI-110 in urothelial carcinoma (UC).


Acupuncture combined with traditional Chinese medicine preparation for the treatment of marrow suppression after chemotherapy: A protocol for systematic review and meta-analysis.

  • Qiongjie Zhu‎ et al.
  • Medicine‎
  • 2021‎

From the perspective of evidence-based medicine, the efficacy and safety of combined therapy for marrow suppression after chemotherapy is still unclear. Given that there is no high-quality meta-analysis to incorporate existing evidence, the purpose of this protocol is to design a systematically review and meta-analysis of the level I evidence to ascertain the efficacy and safety of acupuncture combined with traditional Chinese medicine preparation for marrow suppression after chemotherapy.


First Evidence of Function for Schistosoma japonicumriok-1 and RIOK-1.

  • Mudassar N Mughal‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

Protein kinases are known as key molecules that regulate many biological processes in animals. The right open reading frame protein kinase (riok) genes are known to be essential regulators in model organisms such as the free-living nematode Caenorhabditis elegans. However, very little is known about their function in parasitic trematodes (flukes). In the present study, we characterized the riok-1 gene (Sj-riok-1) and the inferred protein (Sj-RIOK-1) in the parasitic blood fluke, Schistosoma japonicum. We gained a first insight into function of this gene/protein through double-stranded RNA interference (RNAi) and chemical inhibition. RNAi significantly reduced Sj-riok-1 transcription in both female and male worms compared with untreated control worms, and subtle morphological alterations were detected in the ovaries of female worms. Chemical knockdown of Sj-RIOK-1 with toyocamycin (a specific RIOK-1 inhibitor/probe) caused a substantial reduction in worm viability and a major accumulation of mature oocytes in the seminal receptacle (female worms), and of spermatozoa in the sperm vesicle (male worms). These phenotypic alterations indicate that the function of Sj-riok-1 is linked to developmental and/or reproductive processes in S. japonicum.


RNA-Seq Analysis of Influenza A Virus-Induced Transcriptional Changes in Mice Lung and Its Possible Implications for the Virus Pathogenicity in Mice.

  • Tianxin Ma‎ et al.
  • Viruses‎
  • 2021‎

The influenza A virus (IAV) is an important cause of respiratory disease worldwide. It is well known that alveolar epithelial cells are the target cells for the IAV, but there is relatively limited knowledge regarding the role of macrophages during IAV infection. Here, we aimed to analyze transcriptome differences in mouse lungs and macrophage (RAW264.7) cell lines infected with either A/California/04/2009 H1N1 (CA09) or A/chicken/SD/56/2015 H9N2 (SD56) using deep sequencing. The uniquely differentially expressed genes (UDEGs) were analyzed with the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases; the results showed that the lungs infected with the two different viruses had different enrichments of pathways and terms. Interestingly, CA09 virus infection in mice was mostly involved with genes related to the extracellular matrix (ECM), while the most significant differences after SD56 infection in mice were in immune-related genes. Gene set enrichment analysis (GSEA) of RAW264.7 cells revealed that regulation of the cell cycle was of great significance after CA09 infection, whereas the regulation of the immune response was most enriched after SD56 infection, which was consistent with analysis results in the lung. Similar results were obtained from weighted gene co-expression network analysis (WGCNA), where cell cycle regulation was extensively activated in RAW264.7 macrophages infected with the CA09 virus. Disorder of the cell cycle is likely to affect their normal immune regulation, which may be an important factor leading to their different prognoses. These results provide insight into the mechanism of the CA09 virus that caused a pandemic and explain the different reactivities of monocytes/macrophages infected by H9N2 and H1N1 IAV subtypes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: