Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 138 papers

Phospho-Specific Antibody Probes of Intermediate Filament Proteins.

  • Hidemasa Goto‎ et al.
  • Methods in enzymology‎
  • 2016‎

Intermediate filaments (IFs) form one of the major cytoskeletal systems in the cytoplasm or beneath the nuclear membrane. Accumulating data have suggested that IF protein phosphorylation dramatically changes IF structure/dynamics in cells. For the production of an antibody recognizing site-specific protein phosphorylation (a site- and phosphorylation state-specific antibody), we first employed a strategy to immunize animals with an in vitro-phosphorylated polypeptide or a phosphopeptide (corresponding to a phosphorylated residue and its surrounding sequence of amino acids), instead of a phosphorylated protein. Our established methodology not only improves the chance of obtaining a phospho-specific antibody but also has the advantage that one can predesign a targeted phosphorylation site. It is now applied to the production of an antibody recognizing other types of site-specific posttranslational modification, such as acetylation or methylation. The use of such an antibody in immunocytochemistry enables us to analyze spatiotemporal distribution of site-specific IF protein phosphorylation. The antibody is of great use to identify a protein kinase responsible for in vivo IF protein phosphorylation and to monitor intracellular kinase activities through IF protein phosphorylation. Here, we present an overview of our methodology and describe stepwise approaches for the antibody characterization. We also provide some examples of analyses for IF protein phosphorylation involved in mitosis and signal transduction.


Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis.

  • Hiroaki Konishi‎ et al.
  • Nature communications‎
  • 2016‎

Previous reports have suggested that some probiotics inhibit tumorigenesis and cancer progression. However, the molecules involved have not yet been identified. Here, we show that the culture supernatant of Lactobacillus casei ATCC334 has a strong tumour-suppressive effect on colon cancer cells. Using mass spectrometry, we identify ferrichrome as a tumour-suppressive molecule produced by L. casei ATCC334. The tumour-suppressive effect of ferrichrome is greater than that of cisplatin and 5-fluorouracil, and ferrichrome has less of an effect on non-cancerous intestinal cells than either of those agents. A transcriptome analysis reveals that ferrichrome treatment induces apoptosis, which is mediated by the activation of c-jun N-terminal kinase (JNK). Western blotting indicates that the induction of apoptosis by ferrichrome is reduced by the inhibition of the JNK signalling pathway. This we demonstrate that probiotic-derived ferrichrome exerts a tumour-suppressive effect via the JNK signalling pathway.


Human tNASP promotes in vitro nucleosome assembly with histone H3.3.

  • Daiki Kato‎ et al.
  • Biochemistry‎
  • 2015‎

Nuclear autoantigenic sperm proteins (NASPs) are members of the acidic histone chaperones, which promote nucleosome assembly. In humans, two splicing variants proposed for the somatic and testicular isoforms, sNASP and tNASP, respectively, have been found, and the shorter form, sNASP, reportedly promotes nucleosome assembly with the histone H3 isoforms, H3.1, H3.2, and H3.3. However, the biochemical properties of the longer form, tNASP, have not been reported. tNASP is considered to exist specifically in the testis. Our present results revealed that the tNASP protein is ubiquitously produced in various human tissues, in addition to testis. Unexpectedly, we found that the nucleosome assembly activity of purified tNASP was extremely low with the canonical histone H3.1 or H3.2, but was substantially detected with the replacement histone H3.3 variant. A mutational analysis revealed that the H3.3 Ile89 residue, corresponding to the H3.1 Val89 residue, is responsible for the tNASP-mediated nucleosome assembly with H3.3. A histone deposition assay showed that the H3.3-H4 complex is more efficiently deposited onto DNA by tNASP than the H3.1-H4 complex. These results provide evidence that tNASP is ubiquitously produced in various types of human tissues and promotes in vitro nucleosome assembly with H3 variant specificity.


PDIP38/PolDIP2 controls the DNA damage tolerance pathways by increasing the relative usage of translesion DNA synthesis over template switching.

  • Masataka Tsuda‎ et al.
  • PloS one‎
  • 2019‎

Replicative DNA polymerases are frequently stalled at damaged template strands. Stalled replication forks are restored by the DNA damage tolerance (DDT) pathways, error-prone translesion DNA synthesis (TLS) to cope with excessive DNA damage, and error-free template switching (TS) by homologous DNA recombination. PDIP38 (Pol-delta interacting protein of 38 kDa), also called Pol δ-interacting protein 2 (PolDIP2), physically associates with TLS DNA polymerases, polymerase η (Polη), Polλ, and PrimPol, and activates them in vitro. It remains unclear whether PDIP38 promotes TLS in vivo, since no method allows for measuring individual TLS events in mammalian cells. We disrupted the PDIP38 gene, generating PDIP38-/- cells from the chicken DT40 and human TK6 B cell lines. These PDIP38-/- cells did not show a significant sensitivity to either UV or H2O2, a phenotype not seen in any TLS-polymerase-deficient DT40 or TK6 mutants. DT40 provides a unique opportunity of examining individual TLS and TS events by the nucleotide sequence analysis of the immunoglobulin variable (Ig V) gene as the cells continuously diversify Ig V by TLS (non-templated Ig V hypermutation) and TS (Ig gene conversion) during in vitro culture. PDIP38-/- cells showed a shift in Ig V diversification from TLS to TS. We measured the relative usage of TLS and TS in TK6 cells at a chemically synthesized UV damage (CPD) integrated into genomic DNA. The loss of PDIP38 also caused an increase in the relative usage of TS. The number of UV-induced sister chromatid exchanges, TS events associated with crossover, was increased a few times in PDIP38-/- human and chicken cells. Collectively, the loss of PDIP38 consistently causes a shift in DDT from TLS to TS without enhancing cellular sensitivity to DNA damage. We propose that PDIP38 controls the relative usage of TLS and TS increasing usage of TLS without changing the overall capability of DDT.


The Effect of p53 Status on Radio-Sensitivity of Quiescent Tumor Cell Population Irradiated With γ-Rays at Various Dose Rates.

  • Shin-Ichiro Masunaga‎ et al.
  • Journal of clinical medicine research‎
  • 2018‎

The aim of the study was to clarify the effect of p53 status of tumor cells on radio-sensitivity of solid tumors following γ-ray irradiation at various dose rates, referring to the response of intratumor quiescent (Q) cells.


Defect of mitotic vimentin phosphorylation causes microophthalmia and cataract via aneuploidy and senescence in lens epithelial cells.

  • Makoto Matsuyama‎ et al.
  • The Journal of biological chemistry‎
  • 2013‎

Vimentin, a type III intermediate filament (IF) protein, is phosphorylated predominantly in mitosis. The expression of a phosphorylation-compromised vimentin mutant in T24 cultured cells leads to cytokinetic failure, resulting in binucleation (multinucleation). The physiological significance of intermediate filament phosphorylation during mitosis for organogenesis and tissue homeostasis was uncertain. Here, we generated knock-in mice expressing vimentin that have had the serine sites phosphorylated during mitosis substituted by alanine residues. Homozygotic mice (VIM(SA/SA)) presented with microophthalmia and cataracts in the lens, whereas heterozygotic mice (VIM(WT/SA)) were indistinguishable from WT (VIM(WT/WT)) mice. In VIM(SA/SA) mice, lens epithelial cell number was not only reduced but the cells also exhibited chromosomal instability, including binucleation and aneuploidy. Electron microscopy revealed fiber membranes that were disorganized in the lenses of VIM(SA/SA), reminiscent of similar characteristic changes seen in age-related cataracts. Because the mRNA level of the senescence (aging)-related gene was significantly elevated in samples from VIM(SA/SA), the lens phenotype suggests a possible causal relationship between chromosomal instability and premature aging.


Development of a simple and rapid method of precisely identifying the position of 10B atoms in tissue: an improvement in standard alpha autoradiography.

  • Hiroki Tanaka‎ et al.
  • Journal of radiation research‎
  • 2014‎

Boron neutron capture therapy (BNCT) can be utilized to selectively kill cancer cells using a boron compound that accumulates only in cancer cells and not in normal cells. Tumor-bearing animals treated by BNCT are routinely used to evaluate long-term antitumor effects of new boron compounds. Alpha-autoradiography is one of the methods employed in the evaluation of antitumor effects. However, a standard alpha-autoradiography cannot detect the microdistribution of (10)B because of the difficulty associated with the superposition of a tissue sample image and etched pits on a track detector with the etching process. In order to observe the microdistribution of (10)B, some special methods of alpha-autoradiography have been developed that make use of a special track detector, or the atomic force microscope combined with X-ray and UV light irradiation. In contrast, we propose, herein, a simple and rapid method of precisely identifying the position of (10)B using the imaging process and the shape of etched pits, such as their circularity, without the need to use special track detectors or a microscope. A brief description of this method and its verification test are presented in this article. We have established a method of detecting the microdistribution of (10)B with submicron deviation between the position of etched pits and the position of reaction in a tissue sample, for a given circularity of etched pits.


Femtosecond time-resolved X-ray absorption spectroscopy of anatase TiO2 nanoparticles using XFEL.

  • Yuki Obara‎ et al.
  • Structural dynamics (Melville, N.Y.)‎
  • 2017‎

The charge-carrier dynamics of anatase TiO2 nanoparticles in an aqueous solution were studied by femtosecond time-resolved X-ray absorption spectroscopy using an X-ray free electron laser in combination with a synchronized ultraviolet femtosecond laser (268 nm). Using an arrival time monitor for the X-ray pulses, we obtained a temporal resolution of 170 fs. The transient X-ray absorption spectra revealed an ultrafast Ti K-edge shift and a subsequent growth of a pre-edge structure. The edge shift occurred in ca. 100 fs and is ascribed to reduction of Ti by localization of generated conduction band electrons into shallow traps of self-trapped polarons or deep traps at penta-coordinate Ti sites. Growth of the pre-edge feature and reduction of the above-edge peak intensity occur with similar time constants of 300-400 fs, which we assign to the structural distortion dynamics near the surface.


Complementation of aprataxin deficiency by base excision repair enzymes in mitochondrial extracts.

  • Melike Çaglayan‎ et al.
  • Nucleic acids research‎
  • 2017‎

Mitochondrial aprataxin (APTX) protects the mitochondrial genome from the consequence of ligase failure by removing the abortive ligation product, i.e. the 5'-adenylate (5'-AMP) group, during DNA replication and repair. In the absence of APTX activity, blocked base excision repair (BER) intermediates containing the 5'-AMP or 5'-adenylated-deoxyribose phosphate (5'-AMP-dRP) lesions may accumulate. In the current study, we examined DNA polymerase (pol) γ and pol β as possible complementing enzymes in the case of APTX deficiency. The activities of pol β lyase and FEN1 nucleotide excision were able to remove the 5'-AMP-dRP group in mitochondrial extracts from APTX-/- cells. However, the lyase activity of purified pol γ was weak against the 5'-AMP-dRP block in a model BER substrate, and this activity was not able to complement APTX deficiency in mitochondrial extracts from APTX-/-Pol β-/- cells. FEN1 also failed to provide excision of the 5'-adenylated BER intermediate in mitochondrial extracts. These results illustrate the potential role of pol β in complementing APTX deficiency in mitochondria.


The Effect of p53 Status of Tumor Cells on Radiosensitivity of Irradiated Tumors With Carbon-Ion Beams Compared With γ-Rays or Reactor Neutron Beams.

  • Shin-Ichiro Masunaga‎ et al.
  • World journal of oncology‎
  • 2015‎

The aim of the study was to clarify the effect of p53 status of tumor cells on radiosensitivity of solid tumors following accelerated carbon-ion beam irradiation compared with γ-rays or reactor neutron beams, referring to the response of intratumor quiescent (Q) cells.


Radiosensitivity and Capacity to Recover from Radiation-Induced Damage in Pimonidazole-Unlabeled Intratumor Quiescent Cells Depend on p53 Status.

  • Shin-Ichiro Masunaga‎ et al.
  • World journal of oncology‎
  • 2011‎

Using our method for selectively detecting the response of intratumor quiescent (Q) cells to irradiation, the Q cells was shown to have a much larger hypoxic fraction (HF) than total (= proliferating (P) + Q) tumor cell population irrespective of the p53 status of tumor cells. However, the size of the HF was clearly less than 100%, meaning the Q cell population was never fully hypoxic. Thus, the dependency of the radio-sensitivity and recovery capacity from radiation-induced damage on p53 status was investigated in pimonidazole-unlabeled oxygenated Q tumor cells.


The dominant role of proofreading exonuclease activity of replicative polymerase ε in cellular tolerance to cytarabine (Ara-C).

  • Masataka Tsuda‎ et al.
  • Oncotarget‎
  • 2017‎

Chemotherapeutic nucleoside analogs, such as Ara-C, 5-Fluorouracil (5-FU) and Trifluridine (FTD), are frequently incorporated into DNA by the replicative DNA polymerases. However, it remains unclear how this incorporation kills cycling cells. There are two possibilities: Nucleoside analog triphosphates inhibit the replicative DNA polymerases, and/or nucleotide analogs mis-incorporated into genomic DNA interfere with the next round of DNA synthesis as replicative DNA polymerases recognize them as template DNA lesions, arresting synthesis. To address the first possibility, we selectively disrupted the proofreading exonuclease activity of DNA polymerase ε (Polε), the leading-strand replicative polymerase in avian DT40 and human TK6 cell lines. To address the second, we disrupted RAD18, a gene involved in translesion DNA synthesis, a mechanism that relieves stalled replication. Strikingly, POLE1exo-/- cells, but not RAD18-/- cells, were hypersensitive to Ara-C, while RAD18-/- cells were hypersensitive to FTD. gH2AX focus formation following a pulse of Ara-C was immediate and did not progress into the next round of replication, while gH2AX focus formation following a pulse of 5-FU and FTD was delayed to the next round of replication. Biochemical studies indicate that human proofreading-deficient Polε-exo- holoenzyme incorporates Ara-CTP, but subsequently extend from this base several times less efficiently than from intact nucleotides. Together our results suggest that Ara-C acts by blocking extension of the nascent DNA strand and is counteracted by the proofreading activity of Polε, while 5-FU and FTD are efficiently incorporated but act as replication fork blocks in the subsequent S phase, which is counteracted by translesion synthesis.


Zinc Finger Protein St18 Protects against Septic Death by Inhibiting VEGF-A from Macrophages.

  • Kenta Maruyama‎ et al.
  • Cell reports‎
  • 2020‎

Zinc finger protein St18 was initially reported as candidate tumor suppressor gene, and also suggested that fibroblast St18 positively regulates NF-κB activation. Despite the pleiotropic functions of St18, little is known about its roles in macrophages. Here, we report that myeloid St18 is a potent inhibitor of VEGF-A. Mice lacking St18 in myeloid lineages exhibit increased retinal vasculature with enhanced serum VEGF-A concentrations. Despite the normal activation of NF-κB target genes, these mice are highly susceptible to LPS-induced shock, polymicrobial sepsis, and experimental colitis, accompanied by enhanced vascular and intestinal leakage. Pharmacological inhibition of VEGF signaling rescued the high mortality rate of myeloid-specific St18-deficient mice in response to inflammation. Mechanistically, St18 directly binds to Sp1 and attenuates its activity, leading to the suppression of Sp1 target gene VEGF-A. Using mouse genetic and pharmacological models, we reveal myeloid St18 as a critical septic death protector.


Increase in Epithelial Permeability and Cell Metabolism by High Mobility Group Box 1, Inflammatory Cytokines and TPEN in Caco-2 Cells as a Novel Model of Inflammatory Bowel Disease.

  • Maki Miyakawa‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

High mobility group box 1 protein (HMGB1) is involved in the pathogenesis of inflammatory bowel disease (IBD). Patients with IBD develop zinc deficiency. However, the detailed roles of HMGB1 and zinc deficiency in the intestinal epithelial barrier and cellular metabolism of IBD remain unknown. In the present study, Caco-2 cells in 2D culture and 2.5D Matrigel culture were pretreated with transforming growth factor-β (TGF-β) type 1 receptor kinase inhibitor EW-7197, epidermal growth factor receptor (EGFR) kinase inhibitor AG-1478 and a TNFα antibody before treatment with HMGB1 and inflammatory cytokines (TNFα and IFNγ). EW-7197, AG-1478 and the TNFα antibody prevented hyperpermeability induced by HMGB1 and inflammatory cytokines in 2.5D culture. HMGB1 affected cilia formation in 2.5D culture. EW-7197, AG-1478 and the TNFα antibody prevented the increase in cell metabolism induced by HMGB1 and inflammatory cytokines in 2D culture. Furthermore, ZnSO4 prevented the hyperpermeability induced by zinc chelator TPEN in 2.5D culture. ZnSO4 and TPEN induced cellular metabolism in 2D culture. The disruption of the epithelial barrier induced by HMGB1 and inflammatory cytokines contributed to TGF-β/EGF signaling in Caco-2 cells. The TNFα antibody and ZnSO4 as well as EW-7197 and AG-1478 may have potential for use in therapy for IBD.


Phosphorylation-dependent Regnase-1 release from endoplasmic reticulum is critical in IL-17 response.

  • Hiroki Tanaka‎ et al.
  • The Journal of experimental medicine‎
  • 2019‎

Regnase-1 (also known as Zc3h12a or MCPIP-1) is an endoribonuclease involved in mRNA degradation of inflammation-associated genes. Regnase-1 is inactivated in response to external stimuli through post-translational modifications including phosphorylation, yet the precise role of phosphorylation remains unknown. Here, we demonstrate that interleukin (IL)-17 induces phosphorylation of Regnase-1 in an Act1-TBK1/IKKi-dependent manner, especially in nonhematopoietic cells. Phosphorylated Regnase-1 is released from the endoplasmic reticulum (ER) into the cytosol, thereby losing its mRNA degradation function, which leads to expression of IL-17 target genes. By using CRISPR/Cas-9 technology, we generated Regnase-1 mutant mice, in which IL-17-induced Regnase-1 phosphorylation is completely blocked. Mutant mice (Regnase-1AA/AA and Regnase-1ΔCTD/ΔCTD ) were resistant to the IL-17-mediated inflammation caused by T helper 17 (Th17) cells in vivo. Thus, Regnase-1 plays a critical role in the development of IL-17-mediated inflammatory diseases via the Act1-TBK1-IKKi axis, and blockade of Regnase-1 phosphorylation sites may be promising for treatment of Th17-associated diseases.


Bacteria-derived ferrichrome inhibits tumor progression in sporadic colorectal neoplasms and colitis-associated cancer.

  • Takuya Iwama‎ et al.
  • Cancer cell international‎
  • 2021‎

Colorectal cancers develop through several pathways, including the adenoma-carcinoma sequence and colitis-associated carcinogenesis. An altered intestinal microflora has been reported to be associated with the development and progression of colorectal cancer via these pathways. We identified Lactobacillus casei-derived ferrichrome as a mediator of the bacterial anti-tumor effect of colorectal cancer cells through the upregulation of DDIT3. In this study, we investigated the anti-tumor effects of ferrichrome on precancerous conditions and cancer cells associated with sporadic as well as colitis-associated colorectal cancer.


Electroencephalogram-Based Single-Trial Detection of Language Expectation Violations in Listening to Speech.

  • Hiroki Tanaka‎ et al.
  • Frontiers in computational neuroscience‎
  • 2019‎

We propose an approach for the detection of language expectation violations that occur in communication. We examined semantic and syntactic violations from electroencephalogram (EEG) when participants listened to spoken sentences. Previous studies have shown that such event-related potential (ERP) components as N400 and the late positivity (P600) are evoked in the auditory where semantic and syntactic anomalies occur. We used this knowledge to detect language expectation violation from single-trial EEGs by machine learning techniques. We recorded the brain activity of 18 participants while they listened to sentences that contained semantic and syntactic anomalies and identified the significant main effects of these anomalies in the ERP components. We also found that a multilayer perceptron achieved 59.5% (semantic) and 57.7% (syntactic) accuracies.


Safety and effectiveness of granulocyte and monocyte adsorptive apheresis in patients with inflammatory bowel disease in special situations: a multicentre cohort study.

  • Satoshi Motoya‎ et al.
  • BMC gastroenterology‎
  • 2019‎

The available information on granulocyte and monocyte adsorptive apheresis (GMA) in patients with inflammatory bowel disease (IBD) under special situations remains unclear. We conducted a retrospective, multicentre cohort study to evaluate the safety and effectiveness of GMA in patients with IBD under special situations.


Enhancing the sensitivity of the thymidine kinase assay by using DNA repair-deficient human TK6 cells.

  • Mahmoud Abdelghany Ibrahim‎ et al.
  • Environmental and molecular mutagenesis‎
  • 2020‎

The OECD guidelines define the bioassays of identifying mutagenic chemicals, including the thymidine kinase (TK) assay, which specifically detects the mutations that inactivate the TK gene in the human TK6 lymphoid line. However, the sensitivity of this assay is limited because it detects mutations occurring only in the TK gene but not any other genes. Moreover, the limited sensitivity of the conventional TK assay is caused by the usage of DNA repair-proficient wild-type cells, which are capable of accurately repairing DNA damage induced by chemicals. Mutagenic chemicals produce a variety of DNA lesions, including base lesions, sugar damage, crosslinks, and strand breaks. Base damage causes point mutations and is repaired by the base excision repair (BER) and nucleotide excision repair (NER) pathways. To increase the sensitivity of TK assay, we simultaneously disrupted two genes encoding XRCC1, an important BER factor, and XPA, which is essential for NER, generating XRCC1 -/- /XPA -/- cells from TK6 cells. We measured the mutation frequency induced by four typical mutagenic agents, methyl methane sulfonate (MMS), cis-diamminedichloro-platinum(II) (cisplatin, CDDP), mitomycin-C (MMC), and cyclophosphamide (CP) by the conventional TK assay using wild-type TK6 cells and also by the TK assay using XRCC1 -/- /XPA -/- cells. The usage of XRCC1 -/- /XPA -/- cells increased the sensitivity of detecting the mutagenicity by 8.6 times for MMC, 8.5 times for CDDP, and 2.6 times for MMS in comparison with the conventional TK assay. In conclusion, the usage of XRCC1 -/- /XPA -/- cells will significantly improve TK assay.


Cryo-EM structure of the nucleosome core particle containing Giardia lamblia histones.

  • Shoko Sato‎ et al.
  • Nucleic acids research‎
  • 2021‎

Giardia lamblia is a pathogenic unicellular eukaryotic parasite that causes giardiasis. Its genome encodes the canonical histones H2A, H2B, H3, and H4, which share low amino acid sequence identity with their human orthologues. We determined the structure of the G. lamblia nucleosome core particle (NCP) at 3.6 Å resolution by cryo-electron microscopy. G. lamblia histones form a characteristic NCP, in which the visible 125 base-pair region of the DNA is wrapped in a left-handed supercoil. The acidic patch on the G. lamblia octamer is deeper, due to an insertion extending the H2B α1 helix and L1 loop, and thus cannot bind the LANA acidic patch binding peptide. The DNA and histone regions near the DNA entry-exit sites could not be assigned, suggesting that these regions are asymmetrically flexible in the G. lamblia NCP. Characterization by thermal unfolding in solution revealed that both the H2A-H2B and DNA association with the G. lamblia H3-H4 were weaker than those for human H3-H4. These results demonstrate the uniformity of the histone octamer as the organizing platform for eukaryotic chromatin, but also illustrate the unrecognized capability for large scale sequence variations that enable the adaptability of histone octamer surfaces and confer internal stability.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: