2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 84 papers

Deferasirox, an oral iron chelator, prevents hepatocarcinogenesis and adverse effects of sorafenib.

  • Naoki Yamamoto‎ et al.
  • Journal of clinical biochemistry and nutrition‎
  • 2016‎

Although sorafenib is expected to have a chemopreventive effect on hepatocellular carcinoma (HCC) recurrence, there are limitations to its use because of adverse effects, including effects on liver function. We have reported that the iron chelator, deferoxamine can prevent liver fibrosis and preneoplastic lesions. We investigated the influence of administering a new oral iron chelator, deferasirox (DFX), on the effects of sorafenib. We used the choline-deficient l-amino acid-defined (CDAA) diet-induced rat liver fibrosis and HCC model. We divided rats into four groups: CDAA diet only (control group), CDAA diet with sorafenib (sorafenib group), CDAA diet with DFX (DFX group), and CDAA diet with DFX and sorafenib (DFX + sorafenib group). Liver fibrosis and development of preneoplastic lesions were assessed. In addition, we assessed adverse effects such as changes in body and liver weight, skin damage (eruption, dryness, and hair loss), which is defined as hand-foot skin syndrome, in the sorafenib and DFX + sorafenib groups. The combination of DFX + sorafenib markedly prevented liver fibrosis and preneoplastic lesions better than the other treatments. Furthermore, the combination therapy significantly decreased adverse effects compared with the sorafenib group. In conclusion, the combination therapy with DFX and sorafenib may be a useful adjuvant therapy to prevent recurrence after curative treatment of HCC.


The mevalonate pathway regulates primitive streak formation via protein farnesylation.

  • Yoshimi Okamoto-Uchida‎ et al.
  • Scientific reports‎
  • 2016‎

The primitive streak in peri-implantation embryos forms the mesoderm and endoderm and controls cell differentiation. The metabolic cues regulating primitive streak formation remain largely unknown. Here we utilised a mouse embryonic stem (ES) cell differentiation system and a library of well-characterised drugs to identify these metabolic factors. We found that statins, which inhibit the mevalonate metabolic pathway, suppressed primitive streak formation in vitro and in vivo. Using metabolomics and pharmacologic approaches we identified the downstream signalling pathway of mevalonate and revealed that primitive streak formation requires protein farnesylation but not cholesterol synthesis. A tagging-via-substrate approach revealed that nuclear lamin B1 and small G proteins were farnesylated in embryoid bodies and important for primitive streak gene expression. In conclusion, protein farnesylation driven by the mevalonate pathway is a metabolic cue essential for primitive streak formation.


The Hippo pathway controls a switch between retinal progenitor cell proliferation and photoreceptor cell differentiation in zebrafish.

  • Yoichi Asaoka‎ et al.
  • PloS one‎
  • 2014‎

The precise regulation of numbers and types of neurons through control of cell cycle exit and terminal differentiation is an essential aspect of neurogenesis. The Hippo signaling pathway has recently been identified as playing a crucial role in promoting cell cycle exit and terminal differentiation in multiple types of stem cells, including in retinal progenitor cells. When Hippo signaling is activated, the core Mst1/2 kinases activate the Lats1/2 kinases, which in turn phosphorylate and inhibit the transcriptional cofactor Yap. During mouse retinogenesis, overexpression of Yap prolongs progenitor cell proliferation, whereas inhibition of Yap decreases this proliferation and promotes retinal cell differentiation. However, to date, it remains unknown how the Hippo pathway affects the differentiation of distinct neuronal cell types such as photoreceptor cells. In this study, we investigated whether Hippo signaling regulates retinogenesis during early zebrafish development. Knockdown of zebrafish mst2 induced early embryonic defects, including altered retinal pigmentation and morphogenesis. Similar abnormal retinal phenotypes were observed in zebrafish embryos injected with a constitutively active form of yap [(yap (5SA)]. Loss of Yap's TEAD-binding domain, two WW domains, or transcription activation domain attenuated the retinal abnormalities induced by yap (5SA), indicating that all of these domains contribute to normal retinal development. Remarkably, yap (5SA)-expressing zebrafish embryos displayed decreased expression of transcription factors such as otx5 and crx, which orchestrate photoreceptor cell differentiation by activating the expression of rhodopsin and other photoreceptor cell genes. Co-immunoprecipitation experiments revealed that Rx1 is a novel interacting partner of Yap that regulates photoreceptor cell differentiation. Our results suggest that Yap suppresses the differentiation of photoreceptor cells from retinal progenitor cells by repressing Rx1-mediated transactivation of photoreceptor cell genes during zebrafish retinogenesis.


Age-dependent motor dysfunction due to neuron-specific disruption of stress-activated protein kinase MKK7.

  • Tokiwa Yamasaki‎ et al.
  • Scientific reports‎
  • 2017‎

c-Jun N-terminal kinase (JNK) is a member of the mitogen-activated protein kinase family and controls various physiological processes including apoptosis. A specific upstream activator of JNKs is the mitogen-activated protein kinase kinase 7 (MKK7). It has been reported that MKK7-JNK signaling plays an important regulatory role in neural development, however, post-developmental functions in the nervous system have not been elucidated. In this study, we generated neuron-specific Mkk7 knockout mice (MKK7 cKO), which impaired constitutive activation of JNK in the nervous system. MKK7 cKO mice displayed impaired circadian behavioral rhythms and decreased locomotor activity. MKK7 cKO mice at 8 months showed motor dysfunctions such as weakness of hind-limb and gait abnormality in an age-dependent manner. Axonal degeneration in the spinal cord and muscle atrophy were also observed, along with accumulation of the axonal transport proteins JNK-interacting protein 1 and amyloid beta precursor protein in the brains and spinal cords of MKK7 cKO mice. Thus, the MKK7-JNK signaling pathway plays important roles in regulating circadian rhythms and neuronal maintenance in the adult nervous system.


Endosomal phosphatidylserine is critical for the YAP signalling pathway in proliferating cells.

  • Tatsuyuki Matsudaira‎ et al.
  • Nature communications‎
  • 2017‎

Yes-associated protein (YAP) is a recently discovered growth-promoting transcription coactivator that has been shown to regulate the malignancy of various cancers. How YAP is regulated is not fully understood. Here, we show that one of the factors regulating YAP is phosphatidylserine (PS) in recycling endosomes (REs). We use proximity biotinylation to find proteins proximal to PS. Among these proteins are YAP and multiple proteins related to YAP signalling. Knockdown of ATP8A1 (an RE PS-flippase) or evectin-2 (an RE-resident protein) and masking of PS in the cytoplasmic leaflet of membranes, all suppress nuclear localization of YAP and YAP-dependent transcription. ATP8A1 knockdown increases the phosphorylated (activated) form of Lats1 that phosphorylates and inactivates YAP, whereas evectin-2 knockdown reduces the ubiquitination and increased the level of Lats1. The proliferation of YAP-dependent metastatic cancer cells is suppressed by knockdown of ATP8A1 or evectin-2. These results suggest a link between a membrane phospholipid and cell proliferation.


Establishment of functioning human corneal endothelial cell line with high growth potential.

  • Tadashi Yokoi‎ et al.
  • PloS one‎
  • 2012‎

Hexagonal-shaped human corneal endothelial cells (HCEC) form a monolayer by adhering tightly through their intercellular adhesion molecules. Located at the posterior corneal surface, they maintain corneal translucency by dehydrating the corneal stroma, mainly through the Na(+)- and K(+)-dependent ATPase (Na(+)/K(+)-ATPase). Because HCEC proliferative activity is low in vivo, once HCEC are damaged and their numbers decrease, the cornea begins to show opacity due to overhydration, resulting in loss of vision. HCEC cell cycle arrest occurs at the G1 phase and is partly regulated by cyclin-dependent kinase inhibitors (CKIs) in the Rb pathway (p16-CDK4/CyclinD1-pRb). In this study, we tried to activate proliferation of HCEC by inhibiting CKIs. Retroviral transduction was used to generate two new HCEC lines: transduced human corneal endothelial cell by human papillomavirus type E6/E7 (THCEC (E6/E7)) and transduced human corneal endothelial cell by Cdk4R24C/CyclinD1 (THCEH (Cyclin)). Reverse transcriptase polymerase chain reaction analysis of gene expression revealed little difference between THCEC (E6/E7), THCEH (Cyclin) and non-transduced HCEC, but cell cycle-related genes were up-regulated in THCEC (E6/E7) and THCEH (Cyclin). THCEH (Cyclin) expressed intercellular molecules including ZO-1 and N-cadherin and showed similar Na(+)/K(+)-ATPase pump function to HCEC, which was not demonstrated in THCEC (E6/E7). This study shows that HCEC cell cycle activation can be achieved by inhibiting CKIs even while maintaining critical pump function and morphology.


CrxOS maintains the self-renewal capacity of murine embryonic stem cells.

  • Ryota Saito‎ et al.
  • Biochemical and biophysical research communications‎
  • 2009‎

Embryonic stem (ES) cells maintain pluripotency by self-renewal. Several homeoproteins, including Oct3/4 and Nanog, are known to be key factors in maintaining the self-renewal capacity of ES cells. However, other genes required for the mechanisms underlying this process are still unclear. Here we report the identification by in silico analysis of a homeobox-containing gene, CrxOS, that is specifically expressed in murine ES cells and is essential for their self-renewal. ES cells mainly express the short isoform of endogenous CrxOS. Using a polyoma-based episomal expression system, we demonstrate that overexpression of the CrxOS short isoform is sufficient for maintaining the undifferentiated morphology of ES cells and stimulating their proliferation. Finally, using RNA interference, we show that CrxOS is essential for the self-renewal of ES cells, and provisionally identify foxD3 as a downstream target gene of CrxOS. To our knowledge, ours is the first delineation of the physiological role of CrxOS in ES cells.


A global in vivo Drosophila RNAi screen identifies NOT3 as a conserved regulator of heart function.

  • G Gregory Neely‎ et al.
  • Cell‎
  • 2010‎

Heart diseases are the most common causes of morbidity and death in humans. Using cardiac-specific RNAi-silencing in Drosophila, we knocked down 7061 evolutionarily conserved genes under conditions of stress. We present a first global roadmap of pathways potentially playing conserved roles in the cardiovascular system. One critical pathway identified was the CCR4-Not complex implicated in transcriptional and posttranscriptional regulatory mechanisms. Silencing of CCR4-Not components in adult Drosophila resulted in myofibrillar disarray and dilated cardiomyopathy. Heterozygous not3 knockout mice showed spontaneous impairment of cardiac contractility and increased susceptibility to heart failure. These heart defects were reversed via inhibition of HDACs, suggesting a mechanistic link to epigenetic chromatin remodeling. In humans, we show that a common NOT3 SNP correlates with altered cardiac QT intervals, a known cause of potentially lethal ventricular tachyarrhythmias. Thus, our functional genome-wide screen in Drosophila can identify candidates that directly translate into conserved mammalian genes involved in heart function.


Profiling of the circadian metabolome in thioacetamide-induced liver cirrhosis in mice.

  • Koichi Fujisawa‎ et al.
  • Hepatology communications‎
  • 2017‎

Liver cirrhosis can disturb circadian rhythms, decreasing patient quality of life. Changes in metabolic products in cirrhosis are poorly understood. We evaluated changes in liver metabolism products using a thioacetamide-induced mouse model of liver cirrhosis exhibiting circadian rhythm disturbance. Principal component analysis indicated that the circular progression found in the control group was disrupted in the thioacetamide group, and Jonckheere-Terpstra-Kendall analysis showed an imbalanced pattern of oscillating metabolic products. In addition to changes in serotonin and other vitamin A-related metabolites, differences in metabolic products associated with energetics, redox homeostasis, bile acid production, inflammation, and other processes were identified. Carbohydrate metabolism showed a reduction in metabolic products associated with the tricarboxylic acid cycle, suggesting up-regulation of glycolysis and reduced mitochondrial activity. Lipid metabolism showed an increase in ω-oxidation products, suggesting decreased β-oxidation. Conclusion: These data will be useful for chronotherapy and modulation of circadian rhythms in patients with liver damage. (Hepatology Communications 2017;1:704-718).


Blood Free-Circulating DNA Testing of Methylated RUNX3 Is Useful for Diagnosing Early Gastric Cancer.

  • Eizaburou Hideura‎ et al.
  • Cancers‎
  • 2020‎

The main modalities for gastric cancer screening are limited to upper gastrointestinal endoscopy and contrast radiography. The former is invasive, and the latter has high false-negative rates. Thus, alternative diagnostic strategies are required. One solution may be a liquid biopsy. Methylated RUNX3 is a well-known biomarker of gastric cancer but it is very difficult to detect with conventional bisulfite-based methylation assays when only a small amount of serum is available. We developed the combined restriction digital PCR (CORD) assay, a new methylation assay allowing for the counting of as little as one copy of a methylated gene in a small sample of DNA without necessitating DNA bisulfite treatment. We evaluated the sensitivity and specificity of the serum DNA testing of methylated RUNX3 by the CORD assay for the detection of early gastric cancer using 50 patients with early gastric cancer and 61 control individuals. The CORD assay had a sensitivity of 50.0% and a specificity of 80.3% for early gastric cancer. Methylated RUNX3 copies were significantly associated with tumor size, massive submucosal invasion, and lymph-vascular invasion. After the treatment, the median number of methylated RUNX3 copies was significantly decreased. The CORD assay may provide an alternative screening strategy to detect even early-stage gastric cancer.


NUPR1 acts as a pro-survival factor in human bone marrow-derived mesenchymal stem cells and is induced by the hypoxia mimetic reagent deferoxamine.

  • Kazuhito Matsunaga‎ et al.
  • Journal of clinical biochemistry and nutrition‎
  • 2019‎

Differences in the culturing conditions of mesenchymal stem cells used in regenerative medicine may affect their differentiation ability, genome instability, and therapeutic effects. In particular, bone marrow-derived mesenchymal stem cells cultured under hypoxia are known to proliferate while maintaining an undifferentiated state and the use of deferoxamine, a hypoxia mimetic reagent, has proven to be a suitable strategy to maintain the cells under hypoxic metabolic state. Here, the deferoxamine effects were investigated in mesenchymal stem cells to gain insights into the mechanisms regulating stem cell survival. A 12-h deferoxamine treatment reduced proliferation, oxygen consumption, mitochondrial activity, and ATP production. Microarray analysis revealed that deferoxamine enhanced the transcription of genes involved in glycolysis and the HIF1α pathway. Among the earliest changes, transcriptional variations were observed in HIF1α, NUPR1, and EGLN, in line with previous reports showing that short deferoxamine treatments induce substantial changes in mesenchymal stem cells glycolysis pathway. NUPR1, which is induced by stress and involved in autophagy-mediated survival, was upregulated by deferoxamine in a concentration-dependent manner. Consistently, NUPR1 knockdown was found to reduce cell proliferation and increase the proapoptotic effect of staurosporine, suggesting that deferoxamine-induced NUPR1 promotes mesenchymal stem cell survival and cytoprotective autophagy. Our findings may substantially contribute to improve the effectiveness of mesenchymal stem cell-based regenerative medicine.


Metabolic Alterations in Spheroid-Cultured Hepatic Stellate Cells.

  • Koichi Fujisawa‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Hepatic stellate cells (HSCs) play a vital role in liver fibrosis, and a greater understanding of their regulation is required. Recent studies have focused on relationships between extracellular matrix (ECM) stiffness and gene expression or cellular metabolism, but none have provided a detailed metabolic analysis of HSC changes in spheroid cultures. Accordingly, in the present study, we created an HSC spheroid culture and analyzed changes in gene expression and metabolism. Expression of α-smooth muscle actin (α-SMA) decreased in the spheroids, suppressing proliferation. Gene expression analysis revealed the cell cycle, sirtuin signaling, mitochondrial dysfunction, and the Hippo pathway to be canonical pathways, believed to result from decreased proliferative ability or mitochondrial suppression. In the Hippo pathway, nuclear translocation of the yes-associated protein (YAP) was decreased in the spheroid, which was associated with the stiffness of the ECM. Metabolome analysis showed glucose metabolism changes in the spheroid, including glutathione pathway upregulation and increased lipid synthesis. Addition of the glycolytic product phosphoenolpyruvate (PEP) led to increased spheroid size, with increased expression of proteins such as α-SMA and S6 ribosomal protein (RPS6) phosphorylation, which was attributed to decreased suppression of translation. The results of our study contribute to the understanding of metabolic changes in HSCs and the progression of hepatic fibrosis.


Collagen type I-mediated mechanotransduction controls epithelial cell fate conversion during intestinal inflammation.

  • Sakurako Kobayashi‎ et al.
  • Inflammation and regeneration‎
  • 2022‎

The emerging concepts of fetal-like reprogramming following tissue injury have been well recognized as an important cue for resolving regenerative mechanisms of intestinal epithelium during inflammation. We previously revealed that the remodeling of mesenchyme with collagen fibril induces YAP/TAZ-dependent fate conversion of intestinal/colonic epithelial cells covering the wound bed towards fetal-like progenitors. To fully elucidate the mechanisms underlying the link between extracellular matrix (ECM) remodeling of mesenchyme and fetal-like reprogramming of epithelial cells, it is critical to understand how collagen type I influence the phenotype of epithelial cells. In this study, we utilize collagen sphere, which is the epithelial organoids cultured in purified collagen type I, to understand the mechanisms of the inflammatory associated reprogramming. Resolving the entire landscape of regulatory networks of the collagen sphere is useful to dissect the reprogrammed signature of the intestinal epithelium.


Inhibition of sodium glucose cotransporter 2 (SGLT2) delays liver fibrosis in a medaka model of nonalcoholic steatohepatitis (NASH).

  • Ryo Goto‎ et al.
  • FEBS open bio‎
  • 2019‎

The rise in the incidence of nonalcoholic steatohepatitis (NASH) has necessitated the development of an effective prevention methodology. An antidiabetic drug, belonging to the group of sodium glucose cotransporter 2 (SGLT2) inhibitors, has been tested for its therapeutic effect on NASH; however, no studies to date have demonstrated the preventive effect of an SGLT2 inhibitor on the histological progression of steatosis and fibrosis in a sequential manner in animal models. In the present study, we examined the effect of the SGLT2 inhibitor, tofogliflozin (Tofo), on NASH liver tissue using medaka as an animal model, maintaining a feeding amount and drug concentration in all animal bodies. We generated a medaka NASH model by feeding d-rR/Tokyo medaka a high-fat diet and administered Tofo by dissolving the drug directly in the water of the feeding tank. Thereafter, the effects of Tofo on body weight (BW), liver weight, hepatotoxicity, fatty infiltration, and fibrotic changes in the liver were examined. We report here that SGLT2 is expressed in medaka fish and that Tofo inhibits the accumulation of fatty tissue and delays the progression of liver fibrosis in the medaka NASH model by inhibiting increases in blood sugar, serum lipids, and transaminase, irrespective of changes in BW. These results suggest that Tofo is effective for treating NASH and that the medaka model may be useful for developing new therapeutic drugs for this disease.


Trans-portal hepatic infusion of cultured bone marrow-derived mesenchymal stem cells in a steatohepatitis murine model.

  • Ryo Sasaki‎ et al.
  • Journal of clinical biochemistry and nutrition‎
  • 2020‎

The incidence of nonalcoholic steatohepatitis-related liver cirrhosis is increasing. We used a steatohepatitis murine model fed a choline-deficient, l-amino acid-defined (CDAA) diet with a single injection of carbon tetrachloride (CCl4) to evaluate the efficacy of trans-portal hepatic infusion of bone marrow-derived mesenchymal stem cells (BMSCs) for liver fibrosis, liver steatosis, and oxidative stress. Mice were fed a CDAA diet and injected with a single intraperitoneal dose of CCl4 (0.5 ml/kg) after 4 weeks of CDAA diet. After 12 weeks of CDAA diet, 1 × 106 luciferase-positive syngeneic BMSCs (Luc-BMSCs) were infused into the animal spleen. An in vivo imaging system was used to confirm Luc-BMSC accumulation in the liver via the portal vein, and at 4 weeks after infusion, we compared liver fibrosis, liver steatosis, and oxidative stress. After the BMSC-infusion, serum albumin and serum total bilirubin were significantly improved. Liver fibrosis assessed by Sirius red staining, α-smooth muscle actin protein, and collagen 1A1 mRNA expression was significantly suppressed. Furthermore, liver steatosis area was significantly lower, the 8-hydroxy-2'-deoxyguanosine-positive cells were significantly fewer, and superoxide dismutase 2 protein expression of the liver was significantly increased. In conclusion, our data confirmed the efficacy of trans-portal hepatic infusion of BMSCs in a steatohepatitis murine model.


HBx and YAP expression could promote tumor development and progression in HBV-related hepatocellular carcinoma.

  • Chiyumi Oda‎ et al.
  • Biochemistry and biophysics reports‎
  • 2022‎

Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) accounts for 10%-20% of the total HCC numbers. Its clinical features include the occurrence in the younger generation, large tumors, and poor prognosis. The contribution of hepatitis B virus X (HBx) protein in hepatocytes during activation of various oncogenic pathways has been reported. We aimed to assess the possible association between HBx and Yes-associated protein (YAP) expression in the liver tissue and the clinical features of HBV-related HCC.


Evidence for a Role of the Transcriptional Regulator Maid in Tumorigenesis and Aging.

  • Koichi Fujisawa‎ et al.
  • PloS one‎
  • 2015‎

Maid is a helix-loop-helix protein that is involved in cell proliferation. In order to further elucidate its physiological functions, we studied Maid activity in two small fish model systems. We found that Maid expression was greatest in zebrafish liver and that it increased following partial hepatectomy. Maid levels were also high in hepatic preneoplastic foci induced by treatment of zebrafish with diethylnitrosamine (DEN), but low in hepatocellular carcinomas (HCC), mixed tumors, and cholangiocarcinomas developing in these animals. In DEN-treated transgenic medaka overexpressing Maid, hepatic BrdU uptake and proliferation were reduced. After successive breedings, Maid transgenic medaka exhibited decreased movement and a higher incidence of abnormal spine curvature, possibly due to the senescence of spinal cord cells. Taken together, our results suggest that Maid levels can influence the progression of liver cancer. In conclusion, we found that Maid is important regulator of hepatocarconogenesis and aging.


Beneficial effects of combining computed tomography enteroclysis/enterography with capsule endoscopy for screening tumor lesions in the small intestine.

  • Hiroaki Shibata‎ et al.
  • Gastroenterology research and practice‎
  • 2015‎

Aim. To compare the efficacy of using computed tomography enteroclysis/enterography (CTE), capsule endoscopy (CE), and CTE with CE for diagnosing tumor lesions in the small intestine. Materials and Methods. We included 98 patients who underwent CE during the observation period and were subjected to CTE at our hospital from April 2008 to May 2014. Results. CTE had a significantly higher sensitivity than CE (84.6% versus 46.2%, P = 0.039), but there were no significant differences in specificity, positive or negative predictive values, or diagnostic accuracy rates. The sensitivity of CTE/CE was 100%, again significantly higher than that of CE (P = 0.002). The difference in specificity between CTE/CE and CE was not significant, but there were significant differences in positive predictive values (100% for CTE/CE versus 66.7% for CE, P = 0.012), negative predictive values (100% versus 92.1%, P = 0.008), and diagnostic accuracy rate (100% versus 89.8%, P = 0.001). The diagnostic accuracy rate was also significantly higher in CTE/CE versus CTE (100% versus 95.9%, P = 0.043). Conclusion. Our findings suggested that a combination of CTE and CE was useful for screening tumor lesions in the small intestine. This trial is registered with number UMIN000016154.


RhoA activation participates in rearrangement of processing bodies and release of nucleated AU-rich mRNAs.

  • Shinya Takahashi‎ et al.
  • Nucleic acids research‎
  • 2011‎

Cytoplasmic ribonucleoprotein granules, known as processing bodies (P-bodies), contain a common set of conserved RNA-processing enzymes, and mRNAs with AU-rich elements (AREs) are delivered to P-bodies for translational silencing. Although the dynamics of P-bodies is physically linked to cytoskeletal network, it is unclear how small GTPases are involved in the P-body regulation and the ARE-mRNA metabolism. We found here that glucose depletion activates RhoA GTPase and alters the P-body dynamics in HeLa cells. These glucose-depleted effects are reproduced by the overexpression of the RhoA-subfamily GTPases and conversely abolished by the inhibition of RhoA activation. Interestingly, both RhoA activation and glucose depletion inhibit the mRNA accumulation and degradation. These findings indicate that RhoA participates in the stress-induced rearrangement of P-bodies and the release of nucleated ARE-mRNAs for their stabilization.


New susceptibility and resistance HLA-DP alleles to HBV-related diseases identified by a trans-ethnic association study in Asia.

  • Nao Nishida‎ et al.
  • PloS one‎
  • 2014‎

Previous studies have revealed the association between SNPs located on human leukocyte antigen (HLA) class II genes, including HLA-DP and HLA-DQ, and chronic hepatitis B virus (HBV) infection, mainly in Asian populations. HLA-DP alleles or haplotypes associated with chronic HBV infection or disease progression have not been fully identified in Asian populations. We performed trans-ethnic association analyses of HLA-DPA1, HLA-DPB1 alleles and haplotypes with hepatitis B virus infection and disease progression among Asian populations comprising Japanese, Korean, Hong Kong, and Thai subjects. To assess the association between HLA-DP and chronic HBV infection and disease progression, we conducted high-resolution (4-digit) HLA-DPA1 and HLA-DPB1 genotyping in a total of 3,167 samples, including HBV patients, HBV-resolved individuals and healthy controls. Trans-ethnic association analyses among Asian populations identified a new risk allele HLA-DPB1*09 ∶ 01 (P = 1.36 × 10(-6); OR= 1.97; 95% CI, 1.50-2.59) and a new protective allele DPB1*02 ∶ 01 (P = 5.22 × 10(-6); OR = 0.68; 95% CI, 0.58-0.81) to chronic HBV infection, in addition to the previously reported alleles. Moreover, DPB1*02 ∶ 01 was also associated with a decreased risk of disease progression in chronic HBV patients among Asian populations (P = 1.55 × 10(-7); OR = 0.50; 95% CI, 0.39-0.65). Trans-ethnic association analyses identified Asian-specific associations of HLA-DP alleles and haplotypes with HBV infection or disease progression. The present findings will serve as a base for future functional studies of HLA-DP molecules in order to understand the pathogenesis of HBV infection and the development of hepatocellular carcinoma.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: