2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

PROX1 Promotes Secretory Granule Formation in Medullary Thyroid Cancer Cells.

  • Jun Ishii‎ et al.
  • Endocrinology‎
  • 2016‎

Mechanisms of endocrine secretory granule (SG) formation in thyroid C cells and medullary thyroid cancer (MTC) cells have not been fully elucidated. Here we directly demonstrated that PROX1, a developmental homeobox gene, is transcriptionally involved in SG formation in MTC, which is derived from C cells. Analyses using gene expression databases on web sites revealed that, among thyroid cancer cells, MTC cells specifically and highly express PROX1 as well as several SG-forming molecule genes. Immunohistochemical analyses showed that in vivo MTC and C cells expressed PROX1, although follicular thyroid cancer and papillary thyroid cancer cells, normal follicular cells did not. Knockdown of PROX1 in an MTC cells reduced SGs detected by electron microscopy, and decreased expression of SG-related genes (chromogranin A, chromogranin B, secretogranin II, secretogranin III, synaptophysin, and carboxypeptidase E). Conversely, the introduction of a PROX1 transgene into a papillary thyroid cancer and anaplastic thyroid cancer cells induced the expression of SG-related genes. Reporter assays using the promoter sequence of chromogranin A showed that PROX1 activates the chromogranin A gene in addition to the known regulatory mechanisms, which are mediated via the cAMP response element binding protein and the repressor element 1-silencing transcription factor. Furthermore, chromatin immunoprecipitation-PCR assays demonstrated that PROX1 binds to the transcriptional regulatory element of the chromogranin A gene. In conclusion, PROX1 is an important regulator of endocrine SG formation in MTC cells.


Histopathologcial and clonal study of combined lobular and ductal carcinoma of the breast.

  • Eri Tazaki‎ et al.
  • Pathology international‎
  • 2013‎

Lobular carcinoma in situ (LCIS) clinically constitutes a risk factor for the subsequent development of either invasive lobular carcinoma (ILC) or invasive ductal carcinoma (IDC). In order to approach the possibility of this common precursor of both ILC and IDC, we investigated combined lobular and ductal carcinomas. Thirty-two cases of lobular carcinoma were picked up out of 773 cases of operated breast carcinomas. The histopathological detailed re-examination using immunostain of E-cadherin and β-catenin revealed a rather high frequency of combined lobular carcinomas than previous reports. Clinicopathologically, combined lobular carcinomas were younger and smaller than pure lobular carcinomas, and the cytological atypia was relatively low. These results suggested that combined lobular carcinomas could be detected in the earlier stage of breast cancer. Furthermore, the lobular and ductal components of combined carcinomas coexisted in the neighborhood and were distributed contiguously. The immunohistochemical phenotypes of both components were accorded in most combined cases. A genetic analysis using methylation-specific PCR on the HUMARA gene demonstrated that the same allele was inactivated in both lobular and ductal components in all detectable cases of combined carcinoma. Therefore, it is reasonable to assume that both lobular and ductal components of combined carcinomas are clonal and derived from the LCIS as the common precursor lesion, which may contradict the conventional concept that the lobular and ductal carcinomas arise from distinct differentiation pathways.


Dual interleukin-17A/F deficiency protects against acute and chronic response to cigarette smoke exposure in mice.

  • Hiroo Wada‎ et al.
  • Scientific reports‎
  • 2021‎

IL-17A and IL-17F are both involved in the pathogenesis of neutrophilic inflammation observed in COPD and severe asthma. To explore this, mice deficient in both Il17a and Il17f and wild type (WT) mice were exposed to cigarette smoke or environmental air for 5 to 28 days and changes in inflammatory cells in bronchoalveolar lavage (BAL) fluid were determined. We also measured the mRNA expression of keratinocyte derived chemokine (Kc), macrophage inflammatory protein-2 (Mip2), granulocyte-macrophage colony stimulating factor (Gmcsf) and matrix metalloproteinase-9 (Mmp9 ) in lung tissue after 8 days, and lung morphometric changes after 24 weeks of exposure to cigarette smoke compared to air-exposed control animals. Macrophage counts in BAL fluid initially peaked at day 8 and again on day 28, while neutrophil counts peaked between day 8 and 12 in WT mice. Mice dual deficient with Il17a and 1l17f showed similar kinetics with macrophages and neutrophils, but cell numbers at day 8 and mRNA expression of Kc, Gmcsf and Mmp9 were significantly reduced. Furthermore, airspaces in WT mice became larger after cigarette smoke exposure for 24 weeks, whereas this was not seen dual Il17a and 1l17f deficient mice. Combined Il17a and Il17f deficiency resulted in significant attenuation of neutrophilic inflammatory response and protection against structural lung changes after long term cigarette smoke exposure compared with WT mice. Dual IL-17A/F signalling plays an important role in pro-inflammatory responses associated with histological changes induced by cigarette smoke exposure.


Growth regulation via insulin-like growth factor binding protein-4 and -2 in association with mutant K-ras in lung epithelia.

  • Hanako Sato‎ et al.
  • The American journal of pathology‎
  • 2006‎

Gain-of-function point mutations in K-ras affect early events in pulmonary bronchioloalveolar carcinoma. We investigated altered mRNA expression on K-Ras activation in human peripheral lung epithelial cells (HPL1A) using oligonucleotide microarrays. Mutated K-Ras stably expressed in HPL1A accelerated cell growth and induced the expression of insulin-like growth factor (IGF)-binding protein (IGFBP)-4 and IGFBP-2, which modulate cell growth via IGF. Other lung epithelial cell lines (NHBE and HPL1D) revealed the same phenomena as HPL1A by mutated K-ras transgene. Lung cancer cell growth was also accelerated by mutated K-ras gene transduction, whereas IGFBP-4/2 induction was weaker compared with mutated K-Ras-expressing lung epithelial cells. To understand the differences in IGFBP-4/2 inducibility via K-Ras-activated signaling between nonneoplastic lung epithelia and lung carcinoma, we addressed the mechanisms of IGFBP-4/2 transcriptional activation. Our results revealed that Egr-1, which is induced on activation of Ras-mitogen-activated protein kinase signaling, is crucial for transactivation of IGFBP-4/2. Furthermore, IGFBP-4 and IGFBP-2 promoters were often hypermethylated in lung carcinoma, yielding low basal expression/weak induction of IGFBP-4/2. These findings suggest that continuous K-Ras activation accelerates cell growth and evokes a feedback system through IGFBP-4/2 to prevent excessive growth. Moreover, this growth regulation is disrupted in lung cancers because of promoter hypermethylation of IGFBP-4/2 genes.


Congenital goitrous hypothyroidism is caused by dysfunction of the iodide transporter SLC26A7.

  • Jun Ishii‎ et al.
  • Communications biology‎
  • 2019‎

Iodide transport and storage in the thyroid follicles is crucial for thyroid hormone synthesis. Pendrin, the iodide exporter that transports iodide to thyroid follicles, is responsible for Pendred syndrome, a disorder characterized by congenital hypothyroidism and hearing loss. However, thyroid hormone levels are basically normal in patients with Pendred syndrome, indicating the presence of another unknown iodide transporter. Here, we show that SLC26A7 is a novel iodide transporter in the thyroid. We observe that SLC26A7 is specifically expressed in normal thyroid tissues and demonstrate its function in iodide transport. Using whole-exome sequencing, we also find a homozygous nonsense mutation in SLC26A7 (c.1498 C > T; p.Gln500Ter) in two siblings with congenital goitrous hypothyroidism. The mutated SLC26A7 protein shows an abnormal cytoplasmic localisation and lacks the iodide transport function. These results reveal that SLC26A7 functions as a novel iodide transporter in the thyroid and its dysfunction affects thyroid hormonogenesis in humans and causes congenital goitrous hypothyroidism.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: