Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Detection and Characterization of Bat Sarbecovirus Phylogenetically Related to SARS-CoV-2, Japan.

  • Shin Murakami‎ et al.
  • Emerging infectious diseases‎
  • 2020‎

Epidemiology of bat Betacoronavirus, subgenus Sarbecovirus is largely unknown, especially outside China. We detected a sarbecovirus phylogenetically related to severe acute respiratory syndrome coronavirus 2 from Rhinolophus cornutus bats in Japan. The sarbecovirus' spike protein specifically recognizes angiotensin-converting enzyme 2 of R. cornutus, but not humans, as an entry receptor.


A PB1-K577E Mutation in H9N2 Influenza Virus Increases Polymerase Activity and Pathogenicity in Mice.

  • Haruhiko Kamiki‎ et al.
  • Viruses‎
  • 2018‎

H9N2 avian influenza viruses are present in poultry worldwide. These viruses are considered to have pandemic potential, because recent isolates can recognize human-type receptor and several sporadic human infections have been reported. In this study, we aimed to identify mutations related to mammalian adaptation of H9N2 influenza virus. We found that mouse-adapted viruses had several mutations in hemagglutinin (HA), PB2, PA, and PB1. Among the detected mutations, PB1-K577E was a novel mutation that had not been previously reported to involve mammalian adaptation. A recombinant H9N2 virus bearing only the PB1-K577E mutation showed enhanced pathogenicity in mice, with increased virus titers in nasal turbinates compared to that in mice infected with the wild-type virus. In addition, the PB1-K577E mutation increased virus polymerase activity in human cell culture at a lower temperature. These data suggest that the PB1-K577E mutation is a novel pathogenicity determinant of H9N2 virus in mice and could be a signature for mammalian adaptation.


Adaptation of the H7N2 Feline Influenza Virus to Human Respiratory Cell Culture.

  • Wataru Sekine‎ et al.
  • Viruses‎
  • 2022‎

During 2016-2017, the H7N2 feline influenza virus infected more than 500 cats in animal shelters in New York, USA. A veterinarian who had treated the cats became infected with this feline virus and showed mild respiratory symptoms. This suggests that the H7N2 feline influenza virus may evolve into a novel pandemic virus with a high pathogenicity and transmissibility as a result of mutations in humans. In this study, to gain insight into the molecular basis of the transmission of the feline virus to humans, we selected mutant viruses with enhanced growth in human respiratory A549 cells via successive passages of the virus and found almost all mutations to be in the envelope glycoproteins, such as hemagglutinin (HA) and neuraminidase (NA). The reverse genetics approach revealed that the HA mutations, HA1-H16Q, HA2-I47T, or HA2-Y119H, in the stalk region can lead to a high growth of mutant viruses in A549 cells, possibly by changing the pH threshold for membrane fusion. Furthermore, NA mutation, I28S/L, or three-amino-acid deletion in the transmembrane region can enhance viral growth in A549 cells, possibly by changing the HA-NA functional balance. These findings suggest that the H7N2 feline influenza virus has the potential to become a human pathogen by adapting to human respiratory cells, owing to the synergistic biological effect of the mutations in its envelope glycoproteins.


Construction of an Influenza D Virus with an Eight-Segmented Genome.

  • Hiroho Ishida‎ et al.
  • Viruses‎
  • 2021‎

Influenza D virus (IDV) may cause the bovine respiratory disease complex, which is the most common and costly disease affecting the cattle industry. Previously, we revealed that eight segments could be actively packaged in its single virion, suggesting that IDV with the seven-segmented genome shows an agnostic genome packaging mechanism. Herein, we engineered an eight-segmented recombinant IDV in which the NS1 or NS2 genes were separated from NS segment into independent segments (NS1 or NS2 segments, respectively), leading to monocistronic translation of each NS protein. We constructed two plasmids: one for the viral RNA (vRNA)-synthesis of the NS1 segment with a silent mutation at the splicing acceptor site, which controls NS2 transcription in the NS segment; and another for the RNA synthesis of the NS2 segment, with deletion of the intron in the NS segment. These plasmids and six other vRNA-synthesis plasmids were used to fabricate an infectious eight-segmented IDV via reverse genetics. This system enables analysis of the functions of NS1 or NS2. We tested the requirement of the N-terminal overlapping region (NOR) in these proteins for viral infectivity. We rescued a virus with NOR-deleted NS2 protein, which displayed a growth rate equivalent to that of the eight-segmented virus with intact NS2. Thus, the NOR may not influence viral growth. In contrast, a virus with NOR-deleted NS1 protein could not be rescued. These results indicate that the eight-segmented rescue system of IDV may provide an alternative method to analyze viral proteins at the molecular level.


Adaptation of H3N2 canine influenza virus to feline cell culture.

  • Haruhiko Kamiki‎ et al.
  • PloS one‎
  • 2019‎

H3N2 canine influenza viruses are prevalent in Asian and North American countries. During circulation of the viruses in dogs, these viruses are occasionally transmitted to cats. If this canine virus causes an epidemic in cats too, sporadic infections may occur in humans because of the close contact between these companion animals and humans, possibly triggering an emergence of mutant viruses with a pandemic potential. In this study, we aimed to gain an insight into the mutations responsible for inter-species transmission of H3N2 virus from dogs to cats. We found that feline CRFK cell-adapted viruses acquired several mutations in multiple genome segments. Among them, HA1-K299R, HA2-T107I, NA-L35R, and M2-W41C mutations individually increased virus growth in CRFK cells. With a combination of these mutations, virus growth further increased not only in CRFK cells but also in other feline fcwf-4 cells. Both HA1-K299R and HA2-T107I mutations increased thermal resistance of the viruses. In addition, HA2-T107I increased the pH requirement for membrane fusion. These findings suggest that the mutations, especially the two HA mutations, identified in this study, might be responsible for adaptation of H3N2 canine influenza viruses in cats.


A potential bat adenovirus-based oncolytic virus targeting canine cancers.

  • Hiromichi Matsugo‎ et al.
  • Scientific reports‎
  • 2021‎

Although a canine adenovirus (CAdV)-based oncolytic virus (OV) candidate targeting canine tumors has been reported, its oncolytic effect could be attenuated by CAdV vaccine-induced neutralizing antibodies in dog patients. To circumvent this issue, we focused on the bat adenovirus (BtAdV) strain, which was previously isolated from healthy microbats. We previously showed that this virus replicated efficiently in canine cell lines and did not serologically cross-react with CAdVs, suggesting that it may offer the possibility of an OV candidate for canine tumors. Here, we tested the growth properties and cytotoxicity of the BtAdV Mm32 strain in a panel of canine tumor cells and found that its characteristics were equivalent to those of CAdVs. To produce an Mm32 construct with enhanced tumor specificity, we established a novel reverse genetics system for BtAdV based on bacterial artificial chromosomes, and generated a recombinant virus, Mm32-E1Ap + cTERTp, by inserting a tumor-specific canine telomerase reverse transcriptase promoter into its E1A regulatory region. The growth and cytotoxicity of this recombinant were superior to those of wild-type Mm32 in canine tumor cells, unlike in normal canine cells. These data suggest that Mm32-E1Ap + cTERTp could be a promising OV for alternative canine cancer therapies.


Generation of a recombinant temperature-sensitive influenza D virus.

  • Hiroho Ishida‎ et al.
  • Scientific reports‎
  • 2023‎

Influenza D virus (IDV) is a causative agent of the bovine respiratory disease complex (BRDC), which is the most common and costly disease affecting the cattle industry. For developing a candidate vaccine virus against IDV, we sought to produce a temperature-sensitive strain, similar to the live attenuated, cold-adapted vaccine strain available against the influenza A virus (IAV). To this end, we produced a recombinant IDV (designated rD/OK-AL) strain by introducing mutations responsible for the adaptation of the IAV vaccine strain to cold conditions and conferring sensitivity to high temperatures into PB2 and PB1 proteins using reverse genetics. The rD/OK-AL strain grew efficiently at 33 °C but did not grow at 37 °C in the cell culture, indicating its high-temperature sensitivity. In mice, rD/OK-AL was attenuated following intranasal inoculation. It mediated the production of high levels of antibodies against IDV in the serum. When the rD/OK-AL-inoculated mice were challenged with the wild-type virus, the virus was not detected in respiratory organs after the challenge, indicating complete protection against IDV. These results imply that the rD/OK-AL might be a potential candidate for the development of live attenuated vaccines for IDV that can be used to control BRDC.


Characterization of a novel species of adenovirus from Japanese microbat and role of CXADR as its entry factor.

  • Tomoya Kobayashi‎ et al.
  • Scientific reports‎
  • 2019‎

Recently, bat adenoviruses (BtAdVs) of genus Mastadenovirus have been isolated from various bat species, some of them displaying a wide host range in cell culture. In this study, we isolated two BtAdVs from Japanese wild microbats. While one isolate was classified as Bat mastadenovirus A, the other was phylogenetically independent of other BtAdVs. It was rather related to, but serologically different from, canine adenoviruses. We propose that the latter, isolated from Asian parti-colored bat, should be assigned to a novel species of Bat mastadenovirus. Both isolates replicated in various mammalian cell lines, implying their wide cell tropism. To gain insight into cell tropism of these BtAdVs, we investigated the coxsackievirus and adenovirus receptor (CXADR) for virus entry to the cells. We prepared CXADR-knockout canine kidney cells and found that replication of BtAdVs was significantly hampered in these cells. For confirmation, their replication in canine CXADR-addback cells was rescued to the levels with the original cells. We also found that viral replication was corrected in human or bat CXADR-transduced cells to similar levels as in canine CXADR-addback cells. These results suggest that BtAdVs were able to use several mammalian-derived CXADRs as entry factors.


Establishment of a Simple and Efficient Reverse Genetics System for Canine Adenoviruses Using Bacterial Artificial Chromosomes.

  • Hiromichi Matsugo‎ et al.
  • Viruses‎
  • 2020‎

Canine adenoviruses (CAdVs) are divided into pathotypes CAdV1 and CAdV2, which cause infectious hepatitis and laryngotracheitis in canid animals, respectively. They can be the backbones of viral vectors that could be applied in recombinant vaccines or for gene transfer in dogs and in serologically naïve humans. Although conventional plasmid-based reverse genetics systems can be used to construct CAdV vectors, their large genome size creates technical difficulties in gene cloning and manipulation. In this study, we established an improved reverse genetics system for CAdVs using bacterial artificial chromosomes (BACs), in which genetic modifications can be efficiently and simply made through BAC recombineering. To validate the utility of this system, we used it to generate CAdV2 with the early region 1 gene deleted. This mutant was robustly generated and attenuated in cell culture. The results suggest that our established BAC-based reverse genetics system for CAdVs would be a useful and powerful tool for basic and advanced practical studies with these viruses.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: