Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

c-Myc inactivation of p53 through the pan-cancer lncRNA MILIP drives cancer pathogenesis.

  • Yu Chen Feng‎ et al.
  • Nature communications‎
  • 2020‎

The functions of the proto-oncoprotein c-Myc and the tumor suppressor p53 in controlling cell survival and proliferation are inextricably linked as "Yin and Yang" partners in normal cells to maintain tissue homeostasis: c-Myc induces the expression of ARF tumor suppressor (p14ARF in human and p19ARF in mouse) that binds to and inhibits mouse double minute 2 homolog (MDM2) leading to p53 activation, whereas p53 suppresses c-Myc through a combination of mechanisms involving transcriptional inactivation and microRNA-mediated repression. Nonetheless, the regulatory interactions between c-Myc and p53 are not retained by cancer cells as is evident from the often-imbalanced expression of c-Myc over wildtype p53. Although p53 repression in cancer cells is frequently associated with the loss of ARF, we disclose here an alternate mechanism whereby c-Myc inactivates p53 through the actions of the c-Myc-Inducible Long noncoding RNA Inactivating P53 (MILIP). MILIP functions to promote p53 polyubiquitination and turnover by reducing p53 SUMOylation through suppressing tripartite-motif family-like 2 (TRIML2). MILIP upregulation is observed amongst diverse cancer types and is shown to support cell survival, division and tumourigenicity. Thus our results uncover an inhibitory axis targeting p53 through a pan-cancer expressed RNA accomplice that links c-Myc to suppression of p53.


Molecular and Functional Changes to Postsynaptic Cholinergic Signaling in the Vestibular Sensory Organs of Aging C57BL/6 Mice.

  • Lauren A Poppi‎ et al.
  • The journals of gerontology. Series A, Biological sciences and medical sciences‎
  • 2023‎

Cholinergic circuits in the central nervous system are vulnerable to age-related functional decline, but it is not known if aging impacts cholinergic signaling in the vestibular sensory organs, which are critically important to balance maintenance and visual gaze stability. We have previously shown cholinergic neurotransmission between vestibular efferent terminals and type II mechanosensory hair cells requires the alpha9 (Chrna9) nicotinic receptor subunit. Homozygous knockout of the alpha9 subunit causes vestibulo-ocular reflex adaptation deficits that mirror those observed in aged mice. This prompted examination of cholinergic signaling in the vestibular sensory organs of aged mice. We confirmed older (>24 months) mice had impaired performance in a balance beam task compared to young (3-4 months) adult mice. While there was no qualitative loss of cholinergic axon varicosities in the crista ampullaris of old mice, qPCR analysis revealed reduced expression of nicotinic receptor subunit genes Chrna1, Chrna9, and Chrna10 in the cristae of old relative to young mice. Functionally, single-cell patch clamp recordings taken from type II vestibular hair cells exposed to acetylcholine show reduced conductance through alpha9/10 subunit-containing nicotinic receptors in older mice, despite preserved passive membrane properties and voltage-activated conductances. These findings suggest that cholinergic signaling in the peripheral vestibular sensory organs is vulnerable to aging processes, manifesting in dynamic molecular and functional age-related changes. Given the importance of these organs to our everyday activities, and the dramatic increase in fall incidence in the older, further investigation into the mechanisms of altered peripheral vestibular function in older humans is warranted.


ACh-induced hyperpolarization and decreased resistance in mammalian type II vestibular hair cells.

  • Lauren A Poppi‎ et al.
  • Journal of neurophysiology‎
  • 2018‎

In the mammalian vestibular periphery, electrical activation of the efferent vestibular system (EVS) has two effects on afferent activity: 1) it increases background afferent discharge and 2) decreases afferent sensitivity to rotational stimuli. Although the cellular mechanisms underlying these two contrasting afferent responses remain obscure, we postulated that the reduction in afferent sensitivity was attributed, in part, to the activation of α9- containing nicotinic acetylcholine (ACh) receptors (α9*nAChRs) and small-conductance potassium channels (SK) in vestibular type II hair cells, as demonstrated in the peripheral vestibular system of other vertebrates. To test this hypothesis, we examined the effects of the predominant EVS neurotransmitter ACh on vestibular type II hair cells from wild-type (wt) and α9-subunit nAChR knockout (α9-/-) mice. Immunostaining for choline acetyltransferase revealed there were no obvious gross morphological differences in the peripheral EVS innervation among any of these strains. ACh application onto wt type II hair cells, at resting potentials, produced a fast inward current followed by a slower outward current, resulting in membrane hyperpolarization and decreased membrane resistance. Hyperpolarization and decreased resistance were due to gating of SK channels. Consistent with activation of α9*nAChRs and SK channels, these ACh-sensitive currents were antagonized by the α9*nAChR blocker strychnine and SK blockers apamin and tamapin. Type II hair cells from α9-/- mice, however, failed to respond to ACh at all. These results confirm the critical importance of α9nAChRs in efferent modulation of mammalian type II vestibular hair cells. Application of exogenous ACh reduces electrical impedance, thereby decreasing type II hair cell sensitivity. NEW & NOTEWORTHY Expression of α9 nicotinic subunit was crucial for fast cholinergic modulation of mammalian vestibular type II hair cells. These findings show a multifaceted efferent mechanism for altering hair cell membrane potential and decreasing membrane resistance that should reduce sensitivity to hair bundle displacements.


LncRNA REG1CP promotes tumorigenesis through an enhancer complex to recruit FANCJ helicase for REG3A transcription.

  • Hamed Yari‎ et al.
  • Nature communications‎
  • 2019‎

Protein products of the regenerating islet-derived (REG) gene family are important regulators of many cellular processes. Here we functionally characterise a non-protein coding product of the family, the long noncoding RNA (lncRNA) REG1CP that is transcribed from a DNA fragment at the family locus previously thought to be a pseudogene. REG1CP forms an RNA-DNA triplex with a homopurine stretch at the distal promoter of the REG3A gene, through which the DNA helicase FANCJ is tethered to the core promoter of REG3A where it unwinds double stranded DNA and facilitates a permissive state for glucocorticoid receptor α (GRα)-mediated REG3A transcription. As such, REG1CP promotes cancer cell proliferation and tumorigenicity and its upregulation is associated with poor outcome of patients. REG1CP is also transcriptionally inducible by GRα, indicative of feedforward regulation. These results reveal the function and regulation of REG1CP and suggest that REG1CP may constitute a target for cancer treatment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: