Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 45 papers

MicroRNA Profiling of Neurons Generated Using Induced Pluripotent Stem Cells Derived from Patients with Schizophrenia and Schizoaffective Disorder, and 22q11.2 Del.

  • Dejian Zhao‎ et al.
  • PloS one‎
  • 2015‎

We are using induced pluripotent stem cell (iPSC) technology to study neuropsychiatric disorders associated with 22q11.2 microdeletions (del), the most common known schizophrenia (SZ)-associated genetic factor. Several genes in the region have been implicated; a promising candidate is DGCR8, which codes for a protein involved in microRNA (miRNA) biogenesis. We carried out miRNA expression profiling (miRNA-seq) on neurons generated from iPSCs derived from controls and SZ patients with 22q11.2 del. Using thresholds of p<0.01 for nominal significance and 1.5-fold differences in expression, 45 differentially expressed miRNAs were detected (13 lower in SZ and 32 higher). Of these, 6 were significantly down-regulated in patients after correcting for genome wide significance (FDR<0.05), including 4 miRNAs that map to the 22q11.2 del region. In addition, a nominally significant increase in the expression of several miRNAs was found in the 22q11.2 neurons that were previously found to be differentially expressed in autopsy samples and peripheral blood in SZ and autism spectrum disorders (e.g., miR-34, miR-4449, miR-146b-3p, and miR-23a-5p). Pathway and function analysis of predicted mRNA targets of the differentially expressed miRNAs showed enrichment for genes involved in neurological disease and psychological disorders for both up and down regulated miRNAs. Our findings suggest that: i. neurons with 22q11.2 del recapitulate the miRNA expression patterns expected of 22q11.2 haploinsufficiency, ii. differentially expressed miRNAs previously identified using autopsy samples and peripheral cells, both of which have significant methodological problems, are indeed disrupted in neuropsychiatric disorders and likely have an underlying genetic basis.


ZNF804A Transcriptional Networks in Differentiating Neurons Derived from Induced Pluripotent Stem Cells of Human Origin.

  • Jian Chen‎ et al.
  • PloS one‎
  • 2015‎

ZNF804A (Zinc Finger Protein 804A) has been identified as a candidate gene for schizophrenia (SZ), autism spectrum disorders (ASD), and bipolar disorder (BD) in replicated genome wide association studies (GWAS) and by copy number variation (CNV) analysis. Although its function has not been well-characterized, ZNF804A contains a C2H2-type zinc-finger domain, suggesting that it has DNA binding properties, and consequently, a role in regulating gene expression. To further explore the role of ZNF804A on gene expression and its downstream targets, we used a gene knockdown (KD) approach to reduce its expression in neural progenitor cells (NPCs) derived from induced pluripotent stem cells (iPSCs). KD was accomplished by RNA interference (RNAi) using lentiviral particles containing shRNAs that target ZNF804A mRNA. Stable transduced NPC lines were generated after puromycin selection. A control cell line expressing a random (scrambled) shRNA was also generated. Neuronal differentiation was induced, RNA was harvested after 14 days and transcriptome analysis was carried out using RNA-seq. 1815 genes were found to be differentially expressed at a nominally significant level (p<0.05); 809 decreased in expression in the KD samples, while 1106 increased. Of these, 370 achieved genome wide significance (FDR<0.05); 125 were lower in the KD samples, 245 were higher. Pathway analysis showed that genes involved in interferon-signaling were enriched among those that were down-regulated in the KD samples. Correspondingly, ZNF804A KD was found to affect interferon-alpha 2 (IFNA2)-mediated gene expression. The findings suggest that ZNF804A may affect a differentiating neuron's response to inflammatory cytokines, which is consistent with models of SZ and ASD that support a role for infectious disease, and/or autoimmunity in a subgroup of patients.


Transcriptome comparison of human neurons generated using induced pluripotent stem cells derived from dental pulp and skin fibroblasts.

  • Jian Chen‎ et al.
  • PloS one‎
  • 2013‎

Induced pluripotent stem cell (iPSC) technology is providing an opportunity to study neuropsychiatric disorders through the capacity to grow patient-specific neurons in vitro. Skin fibroblasts obtained by biopsy have been the most reliable source of cells for reprogramming. However, using other somatic cells obtained by less invasive means would be ideal, especially in children with autism spectrum disorders (ASD) and other neurodevelopmental conditions. In addition to fibroblasts, iPSCs have been developed from cord blood, lymphocytes, hair keratinocytes, and dental pulp from deciduous teeth. Of these, dental pulp would be a good source for neurodevelopmental disorders in children because obtaining material is non-invasive. We investigated its suitability for disease modeling by carrying out gene expression profiling, using RNA-seq, on differentiated neurons derived from iPSCs made from dental pulp extracted from deciduous teeth (T-iPSCs) and fibroblasts (F-iPSCs). This is the first RNA-seq analysis comparing gene expression profiles in neurons derived from iPSCs made from different somatic cells. For the most part, gene expression profiles were quite similar with only 329 genes showing differential expression at a nominally significant p-value (p<0.05), of which 63 remained significant after correcting for genome-wide analysis (FDR <0.05). The most striking difference was the lower level of expression detected for numerous members of the all four HOX gene families in neurons derived from T-iPSCs. In addition, an increased level of expression was seen for several transcription factors expressed in the developing forebrain (FOXP2, OTX1, and LHX2, for example). Overall, pathway analysis revealed that differentially expressed genes that showed higher levels of expression in neurons derived from T-iPSCs were enriched for genes implicated in schizophrenia (SZ). The findings suggest that neurons derived from T-iPSCs are suitable for disease-modeling neuropsychiatric disorder and may have some advantages over those derived from F-iPSCs.


Characterization of human pseudogene-derived non-coding RNAs for functional potential.

  • Xingyi Guo‎ et al.
  • PloS one‎
  • 2014‎

Thousands of pseudogenes exist in the human genome and many are transcribed, but their functional potential remains elusive and understudied. To explore these issues systematically, we first developed a computational pipeline to identify transcribed pseudogenes from RNA-Seq data. Applying the pipeline to datasets from 16 distinct normal human tissues identified ∼ 3,000 pseudogenes that could produce non-coding RNAs in a manner of low abundance but high tissue specificity under normal physiological conditions. Cross-tissue comparison revealed that the transcriptional profiles of pseudogenes and their parent genes showed mostly positive correlations, suggesting that pseudogene transcription could have a positive effect on the expression of their parent genes, perhaps by functioning as competing endogenous RNAs (ceRNAs), as previously suggested and demonstrated with the PTEN pseudogene, PTENP1. Our analysis of the ENCODE project data also found many transcriptionally active pseudogenes in the GM12878 and K562 cell lines; moreover, it showed that many human pseudogenes produced small RNAs (sRNAs) and some pseudogene-derived sRNAs, especially those from antisense strands, exhibited evidence of interfering with gene expression. Further integrated analysis of transcriptomics and epigenomics data, however, demonstrated that trimethylation of histone 3 at lysine 9 (H3K9me3), a posttranslational modification typically associated with gene repression and heterochromatin, was enriched at many transcribed pseudogenes in a transcription-level dependent manner in the two cell lines. The H3K9me3 enrichment was more prominent in pseudogenes that produced sRNAs at pseudogene loci and their adjacent regions, an observation further supported by the co-enrichment of SETDB1 (a H3K9 methyltransferase), suggesting that pseudogene sRNAs may have a role in regional chromatin repression. Taken together, our comprehensive and systematic characterization of pseudogene transcription uncovers a complex picture of how pseudogene ncRNAs could influence gene and pseudogene expression, at both epigenetic and post-transcriptional levels.


Comparison of REST cistromes across human cell types reveals common and context-specific functions.

  • Shira Rockowitz‎ et al.
  • PLoS computational biology‎
  • 2014‎

Recent studies have shown that the transcriptional functions of REST are much broader than repressing neuronal genes in non-neuronal systems. Whether REST occupies similar chromatin regions in different cell types and how it interacts with other transcriptional regulators to execute its functions in a context-dependent manner has not been adequately investigated. We have applied ChIP-seq analysis to identify the REST cistrome in human CD4+ T cells and compared it with published data from 15 other cell types. We found that REST cistromes were distinct among cell types, with REST binding to several tumor suppressors specifically in cancer cells, whereas 7% of the REST peaks in non-neuronal cells were ubiquitously called and <25% were identified for ≥ 5 cell types. Nevertheless, using a quantitative metric directly comparing raw ChIP-seq signals, we found the majority (∼80%) was shared by ≥ 2 cell types. Integration with RNA-seq data showed that REST binding was generally correlated with low gene expression. Close examination revealed that multiple contexts were correlated with reduced expression of REST targets, e.g., the presence of a cognate RE1 motif and cellular specificity of REST binding. These contexts were shown to play a role in differential corepressor recruitment. Furthermore, transcriptional outcome was highly influenced by REST cofactors, e.g., SIN3 and EZH2 co-occupancy marked higher and lower expression of REST targets, respectively. Unexpectedly, the REST cistrome in differentiated neurons exhibited unique features not observed in non-neuronal cells, e.g., the lack of RE1 motifs and an association with active gene expression. Finally, our analysis demonstrated how REST could differentially regulate a transcription network constituted of miRNAs, REST complex and neuronal factors. Overall, our findings of contexts playing critical roles in REST occupancy and regulatory outcome provide insights into the molecular interactions underlying REST's diverse functions, and point to novel roles of REST in differentiated neurons.


Integrative transcriptome network analysis of iPSC-derived neurons from schizophrenia and schizoaffective disorder patients with 22q11.2 deletion.

  • Mingyan Lin‎ et al.
  • BMC systems biology‎
  • 2016‎

Individuals with 22q11.2 Deletion Syndrome (22q11.2 DS) are a specific high-risk group for developing schizophrenia (SZ), schizoaffective disorder (SAD) and autism spectrum disorders (ASD). Several genes in the deleted region have been implicated in the development of SZ, e.g., PRODH and DGCR8. However, the mechanistic connection between these genes and the neuropsychiatric phenotype remains unclear. To elucidate the molecular consequences of 22q11.2 deletion in early neural development, we carried out RNA-seq analysis to investigate gene expression in early differentiating human neurons derived from induced pluripotent stem cells (iPSCs) of 22q11.2 DS SZ and SAD patients.


Efficient utilization of aerobic metabolism helps Tibetan locusts conquer hypoxia.

  • Dejian Zhao‎ et al.
  • BMC genomics‎
  • 2013‎

Responses to hypoxia have been investigated in many species; however, comparative studies between conspecific geographical populations at different altitudes are rare, especially for invertebrates. The migratory locust, Locusta migratoria, is widely distributed around the world, including on the high-altitude Tibetan Plateau (TP) and the low-altitude North China Plain (NP). TP locusts have inhabited Tibetan Plateau for over 34,000 years and thus probably have evolved superior capacity to cope with hypoxia.


CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment.

  • Ping Wang‎ et al.
  • Molecular autism‎
  • 2015‎

Disruptive mutation in the CHD8 gene is one of the top genetic risk factors in autism spectrum disorders (ASDs). Previous analyses of genome-wide CHD8 occupancy and reduced expression of CHD8 by shRNA knockdown in committed neural cells showed that CHD8 regulates multiple cell processes critical for neural functions, and its targets are enriched with ASD-associated genes.


Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development.

  • Carolina N Perdigoto‎ et al.
  • PLoS genetics‎
  • 2016‎

An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures.


RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders.

  • Mingyan Lin‎ et al.
  • PloS one‎
  • 2011‎

Genome-wide expression analysis using next generation sequencing (RNA-Seq) provides an opportunity for in-depth molecular profiling of fundamental biological processes, such as cellular differentiation and malignant transformation. Differentiating human neurons derived from induced pluripotent stem cells (iPSCs) provide an ideal system for RNA-Seq since defective neurogenesis caused by abnormalities in transcription factors, DNA methylation, and chromatin modifiers lie at the heart of some neuropsychiatric disorders. As a preliminary step towards applying next generation sequencing using neurons derived from patient-specific iPSCs, we have carried out an RNA-Seq analysis on control human neurons. Dramatic changes in the expression of coding genes, long non-coding RNAs (lncRNAs), pseudogenes, and splice isoforms were seen during the transition from pluripotent stem cells to early differentiating neurons. A number of genes that undergo radical changes in expression during this transition include candidates for schizophrenia (SZ), bipolar disorder (BD) and autism spectrum disorders (ASD) that function as transcription factors and chromatin modifiers, such as POU3F2 and ZNF804A, and genes coding for cell adhesion proteins implicated in these conditions including NRXN1 and NLGN1. In addition, a number of novel lncRNAs were found to undergo dramatic changes in expression, one of which is HOTAIRM1, a regulator of several HOXA genes during myelopoiesis. The increase we observed in differentiating neurons suggests a role in neurogenesis as well. Finally, several lncRNAs that map near SNPs associated with SZ in genome wide association studies also increase during neuronal differentiation, suggesting that these novel transcripts may be abnormally regulated in a subgroup of patients.


Transcriptome analysis of microglia in a mouse model of Rett syndrome: differential expression of genes associated with microglia/macrophage activation and cellular stress.

  • Dejian Zhao‎ et al.
  • Molecular autism‎
  • 2017‎

Rett syndrome (RTT) is a severe, neurodevelopmental disorder primarily affecting girls, characterized by progressive loss of cognitive, social, and motor skills after a relatively brief period of typical development. It is usually due to de novo loss of function mutations in the X-linked gene, MeCP2, which codes for the gene expression and chromatin regulator, methyl-CpG binding protein 2. Although the behavioral phenotype appears to be primarily due to neuronal Mecp2 deficiency in mice, other cell types, including astrocytes and oligodendrocytes, also appear to contribute to some aspects of the RTT phenotype. In addition, microglia may also play a role. However, the effect of Mecp2 deficiency in microglia on RTT pathogenesis is controversial.


Decreased Frequencies of Th17 and Tc17 Cells in Patients Infected with Avian Influenza A (H7N9) Virus.

  • Jiaqi Bao‎ et al.
  • Journal of immunology research‎
  • 2019‎

The outbreak of avian influenza A (H7N9) virus infection, with a high mortality rate, has caused concern worldwide. Although interleukin-17- (IL-17-) secreting CD4+ T (Th17) and CD8+ T (Tc17) cells have been proven to play crucial roles in influenza virus infection, the changes and roles of Th17 and Tc17 cells in immune responses to H7N9 infection remain controversial. In this study, we found that the frequencies of Th17 and Tc17 cells among human peripheral blood mononuclear cells (PBMCs) as well as IL-17A protein and mRNA levels were markedly decreased in patients with acute H7N9 virus infection. A positive correlation was found between the serum IL-17A level and the frequency of these two cell groups. In vitro infection experiments revealed decreased Th17 and Tc17 cell frequency and IL-17A levels at various time points postinfection. In addition, Th17 cells were the predominant sources of IL-17A in PBMCs of patients infected with H7N9 virus. Taken together, our results indicate immune disorder in acute H7N9 infection and a restored Th17 and Tc17 cell frequency might serve as a biomarker for predicting recovery in patients infected with this virus.


The locust genome provides insight into swarm formation and long-distance flight.

  • Xianhui Wang‎ et al.
  • Nature communications‎
  • 2014‎

Locusts are one of the world's most destructive agricultural pests and represent a useful model system in entomology. Here we present a draft 6.5 Gb genome sequence of Locusta migratoria, which is the largest animal genome sequenced so far. Our findings indicate that the large genome size of L. migratoria is likely to be because of transposable element proliferation combined with slow rates of loss for these elements. Methylome and transcriptome analyses reveal complex regulatory mechanisms involved in microtubule dynamic-mediated synapse plasticity during phase change. We find significant expansion of gene families associated with energy consumption and detoxification, consistent with long-distance flight capacity and phytophagy. We report hundreds of potential insecticide target genes, including cys-loop ligand-gated ion channels, G-protein-coupled receptors and lethal genes. The L. migratoria genome sequence offers new insights into the biology and sustainable management of this pest species, and will promote its wide use as a model system.


Heat shock alters the expression of schizophrenia and autism candidate genes in an induced pluripotent stem cell model of the human telencephalon.

  • Mingyan Lin‎ et al.
  • PloS one‎
  • 2014‎

Schizophrenia (SZ) and autism spectrum disorders (ASD) are highly heritable neuropsychiatric disorders, although environmental factors, such as maternal immune activation (MIA), play a role as well. Cytokines mediate the effects of MIA on neurogenesis and behavior in animal models. However, MIA stimulators can also induce a febrile reaction, which could have independent effects on neurogenesis through heat shock (HS)-regulated cellular stress pathways. However, this has not been well-studied. To help understand the role of fever in MIA, we used a recently described model of human brain development in which induced pluripotent stem cells (iPSCs) differentiate into 3-dimensional neuronal aggregates that resemble a first trimester telencephalon. RNA-seq was carried out on aggregates that were heat shocked at 39°C for 24 hours, along with their control partners maintained at 37°C. 186 genes showed significant differences in expression following HS (p<0.05), including known HS-inducible genes, as expected, as well as those coding for NGFR and a number of SZ and ASD candidates, including SMARCA2, DPP10, ARNT2, AHI1 and ZNF804A. The degree to which the expression of these genes decrease or increase during HS is similar to that found in copy loss and copy gain copy number variants (CNVs), although the effects of HS are likely to be transient. The dramatic effect on the expression of some SZ and ASD genes places HS, and perhaps other cellular stressors, into a common conceptual framework with disease-causing genetic variants. The findings also suggest that some candidate genes that are assumed to have a relatively limited impact on SZ and ASD pathogenesis based on a small number of positive genetic findings, such as SMARCA2 and ARNT2, may in fact have a much more substantial role in these disorders - as targets of common environmental stressors.


Deguelin Induces the Apoptosis of Lung Squamous Cell Carcinoma Cells through Regulating the Expression of Galectin-1.

  • Bing Yan‎ et al.
  • International journal of biological sciences‎
  • 2016‎

Lung cancer is the leading cause of cancer mortality around the world. Despite advances in the targeted therapy, patients with lung squamous cell carcinoma(SCC) still benefit few from it, and the search for potential effective therapies is imperative. Here, we demonstrated that deguelin induced significant apoptosis of lung SCC cells in vitro. Importantly, we found deguelin down-regulated the expression of galectin-1, which was involved in a wide range of tumorous physiologic process. Thus, we both over-expressed and down-regulated galectin-1 to perform its role in deguelin-induced apoptosis. We found that increased galectin-1 attenuated apoptosis of SCC cells exposed to deguelin, while galectin-1 knockdown sensitized lung cancer cells to deguelin treatment. Additionally, we observed that down-regulation of galectin-1 resulted in suppression of Ras/Raf/ERK pathway which was involved in deguelin-induced cell apoptosis. We also found that deguelin had a significant anti-tumor ability with decline of galectin-1 in vivo. In conclusion, these findings confirm that deguelin may act as a new chemo-preventive agent through inducing apoptosis of lung SCC cells in a galectin-1 dependent manner.


Enriched expression of genes associated with autism spectrum disorders in human inhibitory neurons.

  • Ping Wang‎ et al.
  • Translational psychiatry‎
  • 2018‎

Autism spectrum disorder (ASD) is highly heritable but genetically heterogeneous. The affected neural circuits and cell types remain unclear and may vary at different developmental stages. By analyzing multiple sets of human single cell transcriptome profiles, we found that ASD candidates showed relatively enriched gene expression in neurons, especially in inhibitory neurons. ASD candidates were also more likely to be the hubs of the co-expression gene module that is highly expressed in inhibitory neurons, a feature not detected for excitatory neurons. In addition, we found that upregulated genes in multiple ASD cortex samples were enriched with genes highly expressed in inhibitory neurons, suggesting a potential increase of inhibitory neurons and an imbalance in the ratio between excitatory and inhibitory neurons in ASD brains. Furthermore, the downstream targets of several ASD candidates, such as CHD8, EHMT1 and SATB2, also displayed enriched expression in inhibitory neurons. Taken together, our analyses of single cell transcriptomic data suggest that inhibitory neurons may be a major neuron subtype affected by the disruption of ASD gene networks, providing single cell functional evidence to support the excitatory/inhibitory (E/I) imbalance hypothesis.


PRC1 Fine-tunes Gene Repression and Activation to Safeguard Skin Development and Stem Cell Specification.

  • Idan Cohen‎ et al.
  • Cell stem cell‎
  • 2018‎

Polycomb repressive complexes (PRCs) 1 and 2 are essential chromatin regulators of cell identity. PRC1, a dominant executer of Polycomb-mediated control, functions as multiple sub-complexes that possess catalytic-dependent H2AK119 mono-ubiquitination (H2AK119ub) and catalytic-independent activities. Here, we show that, despite its well-established repressor functions, PRC1 binds to both silent and active genes. Through in vivo loss-of-function studies, we show that global PRC1 function is essential for skin development and stem cell (SC) specification, whereas PRC1 catalytic activity is dispensable. Further dissection demonstrated that both canonical and non-canonical PRC1 complexes bind to repressed genes, marked by H2AK119ub and PRC2-mediated H3K27me3. Interestingly, loss of canonical PRC1, PRC1 catalytic activity, or PRC2 leads to expansion of mechanosensitive Merkel cells in neonatal skin. Non-canonical PRC1 complexes, however, also bind to and promote expression of genes critical for skin development and SC formation. Together, our findings highlight PRC1's diverse roles in executing a precise developmental program.


A systematic review of outcomes in COVID-19 patients treated with western medicine in combination with traditional Chinese medicine versus western medicine alone.

  • Ruizhe Yu‎ et al.
  • Expert reviews in molecular medicine‎
  • 2022‎

Since the outbreak of coronavirus disease 2019 (COVID-19) in late 2019, it has evolved into a global pandemic that has become a substantial public health concern. COVID-19 is still causing a large number of deaths in several countries around the world because of the lack of effective treatment.


RASGRF1 Fusions Activate Oncogenic RAS Signaling and Confer Sensitivity to MEK Inhibition.

  • Lisa Hunihan‎ et al.
  • Clinical cancer research : an official journal of the American Association for Cancer Research‎
  • 2022‎

The identification of actionable oncogenic alterations has enabled targeted therapeutic strategies for subsets of patients with advanced malignancies, including lung adenocarcinoma (LUAD). We sought to assess the frequency of known drivers and identify new candidate drivers in a cohort of LUAD from patients with minimal smoking history.


Lung Mammary Metastases but Not Primary Tumors Induce Accumulation of Atypical Large Platelets and Their Chemokine Expression.

  • Wei Zheng‎ et al.
  • Cell reports‎
  • 2019‎

The tumor microenvironment (TME) at the metastatic site consists of multiple components with considerable cellular heterogeneity. To test whether endothelial cells (ECs) associated with lung metastases express a distinct gene expression program that promotes metastatic growth, we isolated CD31+/CD45- cells from lung mammary cancer metastases for RNA sequencing and found CD44 upregulation. Unexpectedly, the CD44+ subset did not comprise authentic ECs nor were they bone-marrow-derived CD45- endothelial progenitor cells. Instead, they were a population of large platelets that are distinct from regular small platelets. These CD44+ large platelets were enriched in lung metastases but not primary mammary tumors and upregulated myeloid cell-regulating chemokines indicative of potential regulation of metastasis via indirect mechanisms. Identification of this cellular player in the TME of metastasis suggests a role for the recently identified lung-resident megakaryocytes (MKs) and offers an unexplored route to discover novel mechanisms and an opportunity for therapeutic interventions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: