Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Impaired survival of regulatory T cells in pulmonary sarcoidosis.

  • Caroline E Broos‎ et al.
  • Respiratory research‎
  • 2015‎

Impaired regulatory T cell (Treg) function is thought to contribute to ongoing inflammatory responses in sarcoidosis, but underlying mechanisms remain unclear. Moreover, it is not known if increased apoptotic susceptibility of Tregs may contribute to an impaired immunosuppressive function in sarcoidosis. Therefore, the aim of this study is to analyze proportions, phenotype, survival, and apoptotic susceptibility of Tregs in sarcoidosis.


COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function.

  • Joris D Veltman‎ et al.
  • BMC cancer‎
  • 2010‎

Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature cells that accumulates in tumour-bearing hosts. These cells are induced by tumour-derived factors (e.g. prostaglandins) and have a critical role in immune suppression. MDSC suppress T and NK cell function via increased expression of arginase I and production of reactive oxygen species (ROS) and nitric oxide (NO). Immune suppression by MDSC was found to be one of the main factors for immunotherapy insufficiency. Here we investigate if the in vivo immunoregulatory function of MDSC can be reversed by inhibiting prostaglandin synthesis by specific COX-2 inhibition focussing on ROS production by MDSC subtypes. In addition, we determined if dietary celecoxib treatment leads to refinement of immunotherapeutic strategies.


In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma.

  • Leonie S van Rijt‎ et al.
  • The Journal of experimental medicine‎
  • 2005‎

Although dendritic cells (DCs) play an important role in sensitization to inhaled allergens, their function in ongoing T helper (Th)2 cell-mediated eosinophilic airway inflammation underlying bronchial asthma is currently unknown. Here, we show in an ovalbumin (OVA)-driven murine asthma model that airway DCs acquire a mature phenotype and interact with CD4(+) T cells within sites of peribronchial and perivascular inflammation. To study whether DCs contributed to inflammation, we depleted DCs from the airways of CD11c-diphtheria toxin (DT) receptor transgenic mice during the OVA aerosol challenge. Airway administration of DT depleted CD11c(+) DCs and alveolar macrophages and abolished the characteristic features of asthma, including eosinophilic inflammation, goblet cell hyperplasia, and bronchial hyperreactivity. In the absence of CD11c(+) cells, endogenous or adoptively transferred CD4(+) Th2 cells did not produce interleukin (IL)-4, IL-5, and IL-13 in response to OVA aerosol. In CD11c-depleted mice, eosinophilic inflammation and Th2 cytokine secretion were restored by adoptive transfer of CD11c(+) DCs, but not alveolar macrophages. These findings identify lung DCs as key proinflammatory cells that are necessary and sufficient for Th2 cell stimulation during ongoing airway inflammation.


Activation of the D prostanoid 1 receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells.

  • Hamida Hammad‎ et al.
  • The Journal of experimental medicine‎
  • 2007‎

Prostaglandins (PGs) can enhance or suppress inflammation by acting on different receptors expressed by hematopoietic and nonhematopoietic cells. Prostaglandin D(2) binds to the D prostanoid (DP)1 and DP2 receptor and is seen as a critical mediator of asthma causing vasodilation, bronchoconstriction, and inflammatory cell influx. Here we show that inhalation of a selective DP1 agonist suppresses the cardinal features of asthma by targeting the function of lung dendritic cells (DCs). In mice treated with DP1 agonist or receiving DP1 agonist-treated DCs, there was an increase in Foxp3(+) CD4(+) regulatory T cells that suppressed inflammation in an interleukin 10-dependent way. These effects of DP1 agonist on DCs were mediated by cyclic AMP-dependent protein kinase A. We furthermore show that activation of DP1 by an endogenous ligand inhibits airway inflammation as chimeric mice with selective hematopoietic loss of DP1 had strongly enhanced airway inflammation and antigen-pulsed DCs lacking DP1 were better at inducing airway T helper 2 responses in the lung. Triggering DP1 on DCs is an important mechanism to induce regulatory T cells and to control the extent of airway inflammation. This pathway could be exploited to design novel treatments for asthma.


Highly pathogenic avian influenza virus H5N1 infects alveolar macrophages without virus production or excessive TNF-alpha induction.

  • Debby van Riel‎ et al.
  • PLoS pathogens‎
  • 2011‎

Highly pathogenic avian influenza virus (HPAIV) of the subtype H5N1 causes severe, often fatal pneumonia in humans. The pathogenesis of HPAIV H5N1 infection is not completely understood, although the alveolar macrophage (AM) is thought to play an important role. HPAIV H5N1 infection of macrophages cultured from monocytes leads to high percentages of infection accompanied by virus production and an excessive pro-inflammatory immune response. However, macrophages cultured from monocytes are different from AM, both in phenotype and in response to seasonal influenza virus infection. Consequently, it remains unclear whether the results of studies with macrophages cultured from monocytes are valid for AM. Therefore we infected AM and for comparison macrophages cultured from monocytes with seasonal H3N2 virus, HPAIV H5N1 or pandemic H1N1 virus, and determined the percentage of cells infected, virus production and induction of TNF-alpha, a pro-inflammatory cytokine. In vitro HPAIV H5N1 infection of AM compared to that of macrophages cultured from monocytes resulted in a lower percentage of infected cells (up to 25% vs up to 84%), lower virus production and lower TNF-alpha induction. In vitro infection of AM with H3N2 or H1N1 virus resulted in even lower percentages of infected cells (up to 7%) than with HPAIV H5N1, while virus production and TNF-alpha induction were comparable. In conclusion, this study reveals that macrophages cultured from monocytes are not a good model to study the interaction between AM and these influenza virus strains. Furthermore, the interaction between HPAIV H5N1 and AM could contribute to the pathogenicity of this virus in humans, due to the relative high percentage of infected cells rather than virus production or an excessive TNF-alpha induction.


The mucosal adjuvant cholera toxin B instructs non-mucosal dendritic cells to promote IgA production via retinoic acid and TGF-β.

  • Anouk K Gloudemans‎ et al.
  • PloS one‎
  • 2013‎

It is currently unknown how mucosal adjuvants cause induction of secretory immunoglobulin A (IgA), and how T cell-dependent (TD) or -independent (TI) pathways might be involved. Mucosal dendritic cells (DCs) are the primary antigen presenting cells driving TI IgA synthesis, by producing a proliferation-inducing ligand (APRIL), B cell activating factor (BAFF), Retinoic Acid (RA), TGF-β or nitric oxide (NO). We hypothesized that the mucosal adjuvant Cholera Toxin subunit B (CTB) could imprint non-mucosal DCs to induce IgA synthesis, and studied the mechanism of its induction. In vitro, CTB-treated bone marrow derived DCs primed for IgA production by B cells without the help of T cells, yet required co-signaling by different Toll-like receptor (TLR) ligands acting via the MyD88 pathway. CTB-DC induced IgA production was blocked in vitro or in vivo when RA receptor antagonist, TGF-β signaling inhibitor or neutralizing anti-TGF-β was added, demonstrating the involvement of RA and TGF-β in promoting IgA responses. There was no major involvement for BAFF, APRIL or NO. This study highlights that synergism between CTB and MyD88-dependent TLR signals selectively imprints a TI IgA-inducing capacity in non-mucosal DCs, explaining how CTB acts as an IgA promoting adjuvant.


The lung vascular filter as a site of immune induction for T cell responses to large embolic antigen.

  • Monique A M Willart‎ et al.
  • The Journal of experimental medicine‎
  • 2009‎

The bloodstream is an important route of dissemination of invading pathogens. Most of the small bloodborne pathogens, like bacteria or viruses, are filtered by the spleen or liver sinusoids and presented to the immune system by dendritic cells (DCs) that probe these filters for the presence of foreign antigen (Ag). However, larger pathogens, like helminths or infectious emboli, that exceed 20 microm are mostly trapped in the vasculature of the lung. To determine if Ag trapped here can be presented to cells of the immune system, we used a model of venous embolism of large particulate Ag (in the form of ovalbumin [OVA]-coated Sepharose beads) in the lung vascular bed. We found that large Ags were presented and cross-presented to CD4 and CD8 T cells in the mediastinal lymph nodes (LNs) but not in the spleen or liver-draining LNs. Dividing T cells returned to the lungs, and a short-lived infiltrate consisting of T cells and DCs formed around trapped Ag. This infiltrate was increased when the Toll-like receptor 4 was stimulated and full DC maturation was induced by CD40 triggering. Under these conditions, OVA-specific cytotoxic T lymphocyte responses, as well as humoral immunity, were induced. The T cell response to embolic Ag was severely reduced in mice depleted of CD11c(hi) cells or Ly6C/G(+) cells but restored upon adoptive transfer of Ly6C(hi) monocytes. We conclude that the lung vascular filter represents a largely unexplored site of immune induction that traps large bloodborne Ags for presentation by monocyte-derived DCs.


Peptides from the variable region of specific antibodies are shared among lung cancer patients.

  • Dominique de Costa‎ et al.
  • PloS one‎
  • 2014‎

Late diagnosis of lung cancer is still the main reason for high mortality rates in lung cancer. Lung cancer is a heterogeneous disease which induces an immune response to different tumor antigens. Several methods for searching autoantibodies have been described that are based on known purified antigen panels. The aim of our study is to find evidence that parts of the antigen-binding-domain of antibodies are shared among lung cancer patients. This was investigated by a novel approach based on sequencing antigen-binding-fragments (Fab) of immunoglobulins using proteomic techniques without the need of previously known antigen panels. From serum of 93 participants of the NELSON trial IgG was isolated and subsequently digested into Fab and Fc. Fab was purified from the digested mixture by SDS-PAGE. The Fab containing gel-bands were excised, tryptic digested and measured on a nano-LC-Orbitrap-Mass-spectrometry system. Multivariate analysis of the mass spectrometry data by linear canonical discriminant analysis combined with stepwise logistic regression resulted in a 12-antibody-peptide model which was able to distinguish lung cancer patients from controls in a high risk population with a sensitivity of 84% and specificity of 90%. With our Fab-purification combined Orbitrap-mass-spectrometry approach, we found peptides from the variable-parts of antibodies which are shared among lung cancer patients.


Both conventional and interferon killer dendritic cells have antigen-presenting capacity during influenza virus infection.

  • Corine H GeurtsvanKessel‎ et al.
  • PloS one‎
  • 2009‎

Natural killer cells are innate effector cells known for their potential to produce interferon-gamma and kill tumour and virus-infected cells. Recently, B220(+)CD11c(int)NK1.1(+) NK cells were found to also have antigen-presenting capacity like dendritic cells (DC), hence their name interferon-producing killer DC (IKDC). Shortly after discovery, it has already been questioned if IKDC really represent a separate subset of NK cells or merely represent a state of activation. Despite similarities with DCs, in vivo evidence that they behave as bona fide APCs is lacking. Here, using a model of influenza infection, we found recruitment of both conventional B220(-) NK cells and IKDCs to the lung. To study antigen-presenting capacity of NK cell subsets and compare it to cDCs, all cell subsets were sorted from lungs of infected mice and co-cultured ex vivo with antigen specific T cells. Both IKDCs and conventional NK cells as well as cDCs presented virus-encoded antigen to CD8 T cells, whereas only cDCs presented to CD4 T cells. The absence of CD4 responses was predominantly due to a deficiency in MHCII processing, as preprocessed peptide antigen was presented equally well by cDCs and IKDCs. In vivo, the depletion of NK1.1-positive NK cells and IKDCs reduced the expansion of viral nucleoprotein-specific CD8 T cells in the lung and spleen, but did finally not affect viral clearance from the lung. In conclusion, we found evidence for APC function of lung NK cells during influenza infection, but this is a feature not exclusive to the IKDC subset.


Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells.

  • Mirjam Kool‎ et al.
  • The Journal of experimental medicine‎
  • 2008‎

Alum (aluminum hydroxide) is the most widely used adjuvant in human vaccines, but the mechanism of its adjuvanticity remains unknown. In vitro studies showed no stimulatory effects on dendritic cells (DCs). In the absence of adjuvant, Ag was taken up by lymph node (LN)-resident DCs that acquired soluble Ag via afferent lymphatics, whereas after injection of alum, Ag was taken up, processed, and presented by inflammatory monocytes that migrated from the peritoneum, thus becoming inflammatory DCs that induced a persistent Th2 response. The enhancing effects of alum on both cellular and humoral immunity were completely abolished when CD11c(+) monocytes and DCs were conditionally depleted during immunization. Mechanistically, DC-driven responses were abolished in MyD88-deficient mice and after uricase treatment, implying the induction of uric acid. These findings suggest that alum adjuvant is immunogenic by exploiting "nature's adjuvant," the inflammatory DC through induction of the endogenous danger signal uric acid.


Clearance of influenza virus from the lung depends on migratory langerin+CD11b- but not plasmacytoid dendritic cells.

  • Corine H GeurtsvanKessel‎ et al.
  • The Journal of experimental medicine‎
  • 2008‎

Although dendritic cells (DCs) play an important role in mediating protection against influenza virus, the precise role of lung DC subsets, such as CD11b- and CD11b+ conventional DCs or plasmacytoid DCs (pDCs), in different lung compartments is currently unknown. Early after intranasal infection, tracheal CD11b-CD11chi DCs migrated to the mediastinal lymph nodes (MLNs), acquiring co-stimulatory molecules in the process. This emigration from the lung was followed by an accumulation of CD11b+CD11chi DCs in the trachea and lung interstitium. In the MLNs, the CD11b+ DCs contained abundant viral nucleoprotein (NP), but these cells failed to present antigen to CD4 or CD8 T cells, whereas resident CD11b-CD8+ DCs presented to CD8 cells, and migratory CD11b-CD8- DCs presented to CD4 and CD8 T cells. When lung CD11chi DCs and macrophages or langerin+CD11b-CD11chi DCs were depleted using either CD11c-diphtheria toxin receptor (DTR) or langerin-DTR mice, the development of virus-specific CD8+ T cells was severely delayed, which correlated with increased clinical severity and a delayed viral clearance. 120G8+ CD11cint pDCs also accumulated in the lung and LNs carrying viral NP, but in their absence, there was no effect on viral clearance or clinical severity. Rather, in pDC-depleted mice, there was a reduction in antiviral antibody production after lung clearance of the virus. This suggests that multiple DCs are endowed with different tasks in mediating protection against influenza virus.


Ratio of intratumoral macrophage phenotypes is a prognostic factor in epithelioid malignant pleural mesothelioma.

  • Robin Cornelissen‎ et al.
  • PloS one‎
  • 2014‎

The tumor micro-environment and especially the different macrophage phenotypes appear to be of great influence on the behavior of multiple tumor types. M1 skewed macrophages possess anti-tumoral capacities, while the M2 polarized macrophages have pro-tumoral capacities. We analyzed if the macrophage count and the M2 to total macrophage ratio is a discriminative marker for outcome after surgery in malignant pleural mesothelioma (MPM) and studied the prognostic value of these immunological cells.


Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen.

  • Hendrik Jan de Heer‎ et al.
  • The Journal of experimental medicine‎
  • 2004‎

Tolerance is the usual outcome of inhalation of harmless antigen, yet T helper (Th) type 2 cell sensitization to inhaled allergens induced by dendritic cells (DCs) is common in atopic asthma. Here, we show that both myeloid (m) and plasmacytoid (p) DCs take up inhaled antigen in the lung and present it in an immunogenic or tolerogenic form to draining node T cells. Strikingly, depletion of pDCs during inhalation of normally inert antigen led to immunoglobulin E sensitization, airway eosinophilia, goblet cell hyperplasia, and Th2 cell cytokine production, cardinal features of asthma. Furthermore, adoptive transfer of pDCs before sensitization prevented disease in a mouse asthma model. On a functional level, pDCs did not induce T cell division but suppressed the generation of effector T cells induced by mDCs. These studies show that pDCs provide intrinsic protection against inflammatory responses to harmless antigen. Therapies exploiting pDC function might be clinically effective in preventing the development of asthma.


Low-dose cyclophosphamide synergizes with dendritic cell-based immunotherapy in antitumor activity.

  • Joris D Veltman‎ et al.
  • Journal of biomedicine & biotechnology‎
  • 2010‎

Clinical immunotherapy trials like dendritic cell-based vaccinations are hampered by the tumor's offensive repertoire that suppresses the incoming effector cells. Regulatory T cells are instrumental in suppressing the function of cytotoxic T cells. We studied the effect of low-dose cyclophosphamide on the suppressive function of regulatory T cells and investigated if the success rate of dendritic cell immunotherapy could be improved. For this, mesothelioma tumor-bearing mice were treated with dendritic cell-based immunotherapy alone or in combination with low-dose of cyclophosphamide. Proportions of regulatory T cells and the cytotoxic T cell functions at different stages of disease were analyzed. We found that low-dose cyclophosphamide induced beneficial immunomodulatory effects by preventing the induction of Tregs, and as a consequence, cytotoxic T cell function was no longer affected. Addition of cyclophosphamide improved immunotherapy leading to an increased median and overall survival. Future studies are needed to address the usefulness of this combination treatment for mesothelioma patients.


Low-dose cyclophosphamide depletes circulating naïve and activated regulatory T cells in malignant pleural mesothelioma patients synergistically treated with dendritic cell-based immunotherapy.

  • Lisanne Noordam‎ et al.
  • Oncoimmunology‎
  • 2018‎

Rationale: Regulatory T cells (Treg) play a pivotal role in the immunosuppressive tumor micro-environment in cancer, including mesothelioma. Recently, the combination of autologous tumor lysate-pulsed dendritic cells (DC) and metronomic cyclophosphamide (mCTX) was reported as a feasible and well-tolerated treatment in malignant pleural mesothelioma patients and further as a method to reduce circulating Tregs. Objectives: The aim of this study was to establish the immunological effects of mCTX alone and in combination with DC-based immunotherapy on circulating Treg and other T cell subsets in mesothelioma patients. Methods: Ten patients received mCTX and DC-based immunotherapy after chemotherapy (n = 5) or chemotherapy and debulking surgery (n = 5). Peripheral blood mononuclear cells before, during and after treatment were analyzed for various Treg and other lymphocyte subsets by flow cytometry. Results: After one week treatment with mCTX, both activated FoxP3hi and naïve CD45RA+ Tregs were effectively decreased in all patients. In addition, a shift from naïve and central memory towards effector memory and effector T cells was observed. Survival analysis showed that overall Treg levels before treatment were not correlated with survival, however, nTreg levels before treatment were positively correlated with survival. After completion of mCTX and DC-based immunotherapy treatment, all cell subsets returned to baseline levels, except for the proportions of proliferating EM CD8 T cells, which increased. Conclusions: mCTX treatment effectively reduced the proportions of circulating Tregs, both aTregs and nTregs, thereby favoring EM T cell subsets in mesothelioma patients. Interestingly, baseline levels of nTregs were positively correlated to overall survival upon complete treatment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: