2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Downregulation of TNIP1 Expression Leads to Increased Proliferation of Human Keratinocytes and Severer Psoriasis-Like Conditions in an Imiquimod-Induced Mouse Model of Dermatitis.

  • Yan Chen‎ et al.
  • PloS one‎
  • 2015‎

Psoriasis is a chronic, inflammatory skin disease involving both environmental and genetic factors. According to genome-wide association studies (GWAS), the TNIP1 gene, which encodes the TNF-α-induced protein 3-interacting protein 1 (TNIP1), is strongly linked to the susceptibility of psoriasis. TNIP1 is a widely expressed ubiquitin sensor that binds to the ubiquitin-editing protein A20 and restricts TNF- and TLR-induced signals. In our study, TNIP1 expression decreased in specimens of epidermis affected by psoriasis. Based on previous studies suggesting a role for TNIP1 in modulating cancer cell growth, we investigated its role in keratinocyte proliferation, which is clearly abnormal in psoriasis. To mimic the downregulation or upregulation of TNIP1 in HaCaT cells and primary human keratinocytes (PHKs), we used a TNIP1 specific small interfering hairpin RNA (TNIP1 shRNA) lentiviral vector or a recombinant TNIP1 (rTNIP1) lentiviral vector, respectively. Blocking TNIP1 expression increased keratinocyte proliferation, while overexpression of TNIP1 decreased keratinocyte proliferation. Furthermore, we showed that TNIP1 signaling might involve extracellular signal-regulated kinase1/2 (Erk1/2) and CCAAT/enhancer-binding protein β (C/EBPβ) activity. Intradermal injection of TNIP1 shRNA in BALB/c mice led to exaggerated psoriatic conditions in imiquimod (IMQ)-induced psoriasis-like dermatitis. These findings indicate that TNIP1 has a protective role in psoriasis and therefore could be a promising therapeutic target.


Biodistribution of 89Zr-oxine-labeled human bone marrow-derived mesenchymal stem cells by micro-PET/computed tomography imaging in Sprague-Dawley rats.

  • Shuzhe Wang‎ et al.
  • Nuclear medicine communications‎
  • 2022‎

To develop a method for labeling human bone marrow mesenchymal stem cells (hMSCs) with 89Zr-oxine to characterize the biodistribution characteristics of hMSCs in normal Sprague-Dawley (SD) rats in real-time by micro-PET-computed tomography (micro-PET/CT) imaging.


Mutations in POFUT1, encoding protein O-fucosyltransferase 1, cause generalized Dowling-Degos disease.

  • Ming Li‎ et al.
  • American journal of human genetics‎
  • 2013‎

Dowling-Degos disease (DDD), or reticular pigmented anomaly of the flexures, is a type of rare autosomal-dominant genodermatosis characterized by reticular hyperpigmentation and hypopigmentation of the flexures, such as the neck, axilla, and areas below the breasts and groin, and shows considerable heterogeneity. Loss-of-function mutations of keratin 5 (KRT5) have been identified in DDD individuals. In this study, we collected DNA samples from a large Chinese family affected by generalized DDD and found no mutation of KRT5. We performed a genome-wide linkage analysis of this family and mapped generalized DDD to a region between rs1293713 and rs244123 on chromosome 20 [corrected]. By exome sequencing, we identified nonsense mutation c.430G>T (p.Glu144(∗)) in POFUT1, which encodes protein O-fucosyltransferase 1, in the family. Study of an additional generalized DDD individual revealed the heterozygous deletion mutation c.482delA (p.Lys161Serfs(∗)42) in POFUT1. Knockdown of POFUT1 reduces the expression of NOTCH1, NOTCH2, HES1, and KRT5 in HaCaT cells. Using zebrafish, we showed that pofut1 is expressed in the skin and other organs. Morpholino knockdown of pofut1 in zebrafish produced a phenotype characteristic of hypopigmentation at 48 hr postfertilization (hpf) and abnormal melanin distribution at 72 hpf, replicating the clinical phenotype observed in our DDD individuals. At 48 and 72 hpf, tyrosinase activities decreased by 33% and 45%, respectively, and melanin protein contents decreased by 20% and 25%, respectively. Our findings demonstrate that POFUT1 mutations cause generalized DDD. These results strongly suggest that the protein product of POFUT1 plays a significant and conserved role in melanin synthesis and transport.


Role of A3 adenosine receptor in diabetic neuropathy.

  • Heng Yan‎ et al.
  • Journal of neuroscience research‎
  • 2016‎

Neuropathy is the most common diabetic complication. Although the A1 and A2A adenosine receptors are important pharmacological targets in alleviating diabetic neuropathy, the role of the A3 adenosine receptor remains unknown. Because the A3 adenosine receptor regulates pain induced by chronic constriction injury or chemotherapy, its stimulation might also attenuate diabetic neuropathy. This study examines the effects of systemic treatment with the A3 adenosine receptor agonist 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-β-d-ribofuranuronamide (IB-MECA) on diabetic neuropathy and explores the putative mechanisms underlying its pharmacological effects. We show that IB-MECA alleviated mechanical hyperalgesia and thermal hypoalgesia in mice 2 weeks but not 4 weeks after streptozocin (STZ) treatment. Furthermore, IB-MECA prevented the reduction in sciatic motor nerve conduction velocity and sensory nerve conduction velocity in diabetic mice 2 weeks but not 4 weeks after STZ treatment. Similarly, IB-MECA inhibited the activation of nuclear factor-κB and decreased the generation of tumor necrosis factor-α in the spinal cord of mice 2 weeks but not 4 weeks after STZ treatment. These phenomena were associated with reduction of A3 adenosine receptor expression in the spinal cord after long-term diabetes. Our results suggest that the A3 adenosine receptor plays a critical role in regulating diabetic neuropathy and that reduction in A3 adenosine receptor expression/function might contribute to the progression of diabetic neuropathy. © 2016 Wiley Periodicals, Inc.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: