Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 41 papers

First somatic mutation of E2F1 in a critical DNA binding residue discovered in well-differentiated papillary mesothelioma of the peritoneum.

  • Willie Yu‎ et al.
  • Genome biology‎
  • 2011‎

Well differentiated papillary mesothelioma of the peritoneum (WDPMP) is a rare variant of epithelial mesothelioma of low malignancy potential, usually found in women with no history of asbestos exposure. In this study, we perform the first exome sequencing of WDPMP.


TEX11 is mutated in infertile men with azoospermia and regulates genome-wide recombination rates in mouse.

  • Fang Yang‎ et al.
  • EMBO molecular medicine‎
  • 2015‎

Genome-wide recombination is essential for genome stability, evolution, and speciation. Mouse Tex11, an X-linked meiosis-specific gene, promotes meiotic recombination and chromosomal synapsis. Here, we report that TEX11 is mutated in infertile men with non-obstructive azoospermia and that an analogous mutation in the mouse impairs meiosis. Genetic screening of a large cohort of idiopathic infertile men reveals that TEX11 mutations, including frameshift and splicing acceptor site mutations, cause infertility in 1% of azoospermic men. Functional evaluation of three analogous human TEX11 missense mutations in transgenic mouse models identified one mutation (V748A) as a potential infertility allele and found two mutations non-causative. In the mouse model, an intronless autosomal Tex11 transgene functionally substitutes for the X-linked Tex11 gene, providing genetic evidence for the X-to-autosomal retrotransposition evolution phenomenon. Furthermore, we find that TEX11 protein levels modulate genome-wide recombination rates in both sexes. These studies indicate that TEX11 alleles affecting expression level or substituting single amino acids may contribute to variations in recombination rates between sexes and among individuals in humans.


High-depth sequencing of over 750 genes supports linear progression of primary tumors and metastases in most patients with liver-limited metastatic colorectal cancer.

  • Iain Beehuat Tan‎ et al.
  • Genome biology‎
  • 2015‎

Colorectal cancer with metastases limited to the liver (liver-limited mCRC) is a distinct clinical subset characterized by possible cure with surgery. We performed high-depth sequencing of over 750 cancer-associated genes and copy number profiling in matched primary, metastasis and normal tissues to characterize genomic progression in 18 patients with liver-limited mCRC.


NanoString expression profiling identifies candidate biomarkers of RAD001 response in metastatic gastric cancer.

  • Kakoli Das‎ et al.
  • ESMO open‎
  • 2016‎

Gene expression profiling has contributed greatly to cancer research. However, expression-driven biomarker discovery in metastatic gastric cancer (mGC) remains unclear. A gene expression profile predicting RAD001 response in refractory GC was explored in this study.


Intrachromosomal homologous recombination between inverted amplicons on opposing Y-chromosome arms.

  • Julian Lange‎ et al.
  • Genomics‎
  • 2013‎

Amplicons--large, nearly identical repeats in direct or inverted orientation--are abundant in the male-specific region of the human Y chromosome (MSY) and provide targets for intrachromosomal non-allelic homologous recombination (NAHR). Thus far, NAHR events resulting in deletions, duplications, inversions, or isodicentric chromosomes have been reported only for amplicon pairs located exclusively on the short arm (Yp) or the long arm (Yq). Here we report our finding of four men with Y chromosomes that evidently formed by intrachromosomal NAHR between inverted repeat pairs comprising one amplicon on Yp and one amplicon on Yq. In two men with spermatogenic failure, sister-chromatid crossing-over resulted in pseudoisoYp chromosome formation and loss of distal Yq. In two men with normal spermatogenesis, intrachromatid crossing-over generated pericentric inversions. These findings highlight the recombinogenic nature of the MSY, as intrachromosomal NAHR occurs for nearly all Y-chromosome amplicon pairs, even those located on opposing chromosome arms.


Host cell transcriptome profile during wild-type and attenuated dengue virus infection.

  • October M Sessions‎ et al.
  • PLoS neglected tropical diseases‎
  • 2013‎

Dengue viruses 1-4 (DENV1-4) rely heavily on the host cell machinery to complete their life cycle, while at the same time evade the host response that could restrict their replication efficiency. These requirements may account for much of the broad gene-level changes to the host transcriptome upon DENV infection. However, host gene function is also regulated through transcriptional start site (TSS) selection and post-transcriptional modification to the RNA that give rise to multiple gene isoforms. The roles these processes play in the host response to dengue infection have not been explored. In the present study, we utilized RNA sequencing (RNAseq) to identify novel transcript variations in response to infection with both a pathogenic strain of DENV1 and its attenuated derivative. RNAseq provides the information necessary to distinguish the various isoforms produced from a single gene and their splice variants. Our data indicate that there is an extensive amount of previously uncharacterized TSS and post-transcriptional modifications to host RNA over a wide range of pathways and host functions in response to DENV infection. Many of the differentially expressed genes identified in this study have previously been shown to be required for flavivirus propagation and/or interact with DENV gene products. We also show here that the human transcriptome response to an infection by wild-type DENV or its attenuated derivative differs significantly. This differential response to wild-type and attenuated DENV infection suggests that alternative processing events may be part of a previously uncharacterized innate immune response to viral infection that is in large part evaded by wild-type DENV.


Sex chromosome-to-autosome transposition events counter Y-chromosome gene loss in mammals.

  • Jennifer F Hughes‎ et al.
  • Genome biology‎
  • 2015‎

Although the mammalian X and Y chromosomes evolved from a single pair of autosomes, they are highly differentiated: the Y chromosome is dramatically smaller than the X and has lost most of its genes. The surviving genes are a specialized set with extraordinary evolutionary longevity. Most mammalian lineages have experienced delayed, or relatively recent, loss of at least one conserved Y-linked gene. An extreme example of this phenomenon is in the Japanese spiny rat, where the Y chromosome has disappeared altogether. In this species, many Y-linked genes were rescued by transposition to new genomic locations, but until our work presented here, this has been considered an isolated case.


Quantitative analysis of Y-Chromosome gene expression across 36 human tissues.

  • Alexander K Godfrey‎ et al.
  • Genome research‎
  • 2020‎

Little is known about how human Y-Chromosome gene expression directly contributes to differences between XX (female) and XY (male) individuals in nonreproductive tissues. Here, we analyzed quantitative profiles of Y-Chromosome gene expression across 36 human tissues from hundreds of individuals. Although it is often said that Y-Chromosome genes are lowly expressed outside the testis, we report many instances of elevated Y-Chromosome gene expression in a nonreproductive tissue. A notable example is EIF1AY, which encodes eukaryotic translation initiation factor 1A Y-linked, together with its X-linked homolog EIF1AX Evolutionary loss of a Y-linked microRNA target site enabled up-regulation of EIF1AY, but not of EIF1AX, in the heart. Consequently, this essential translation initiation factor is nearly twice as abundant in male as in female heart tissue at the protein level. Divergence between the X and Y Chromosomes in regulatory sequence can therefore lead to tissue-specific Y-Chromosome-driven sex biases in expression of critical, dosage-sensitive regulatory genes.


Recombination between palindromes P5 and P1 on the human Y chromosome causes massive deletions and spermatogenic failure.

  • Sjoerd Repping‎ et al.
  • American journal of human genetics‎
  • 2002‎

It is widely believed that at least three nonoverlapping regions of the human Y chromosome-AZFa, AZFb, and AZFc ("azoospermia factors" a, b, and c)-are essential for normal spermatogenesis. These intervals are defined by interstitial Y-chromosome deletions that impair or extinguish spermatogenesis. Deletion breakpoints, mechanisms, and lengths, as well as inventories of affected genes, have been elucidated for deletions of AZFa and of AZFc but not for deletions of AZFb or of AZFb plus AZFc. We studied three deletions of AZFb and eight deletions of AZFb plus AZFc, as assayed by the STSs defining these intervals. Guided by Y-chromosome sequence, we localized breakpoints precisely and were able to sequence nine of the deletion junctions. Homologous recombination can explain seven of these deletions but not the remaining two. This fact and our discovery of breakpoint hotspots suggest that factors in addition to homology underlie these deletions. The deletions previously thought to define AZFb were found to extend from palindrome P5 to the proximal arm of palindrome P1, 1.5 Mb within AZFc. Thus, they do not define a genomic region separate from AZFc. We also found that the deletions of AZFb plus AZFc, as assayed by standard STSs heretofore available, in fact extend from P5 to the distal arm of P1 and spare distal AZFc. Both classes of deletions are massive: P5/proximal-P1 deletions encompass up to 6.2 Mb and remove 32 genes and transcripts; P5/distal-P1 deletions encompass up to 7.7 Mb and remove 42 genes and transcripts. To our knowledge, these are the largest of all human interstitial deletions for which deletion junctions and complete intervening sequence are available. The restriction of the associated phenotype to spermatogenic failure indicates the remarkable functional specialization of the affected regions of the Y chromosome.


Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction.

  • Jian Ye‎ et al.
  • BMC bioinformatics‎
  • 2012‎

Choosing appropriate primers is probably the single most important factor affecting the polymerase chain reaction (PCR). Specific amplification of the intended target requires that primers do not have matches to other targets in certain orientations and within certain distances that allow undesired amplification. The process of designing specific primers typically involves two stages. First, the primers flanking regions of interest are generated either manually or using software tools; then they are searched against an appropriate nucleotide sequence database using tools such as BLAST to examine the potential targets. However, the latter is not an easy process as one needs to examine many details between primers and targets, such as the number and the positions of matched bases, the primer orientations and distance between forward and reverse primers. The complexity of such analysis usually makes this a time-consuming and very difficult task for users, especially when the primers have a large number of hits. Furthermore, although the BLAST program has been widely used for primer target detection, it is in fact not an ideal tool for this purpose as BLAST is a local alignment algorithm and does not necessarily return complete match information over the entire primer range.


Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content.

  • Jennifer F Hughes‎ et al.
  • Nature‎
  • 2010‎

The human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome. Little is known about the recent evolution of the Y chromosome because only the human Y chromosome has been fully sequenced. Prevailing theories hold that Y chromosomes evolve by gene loss, the pace of which slows over time, eventually leading to a paucity of genes, and stasis. These theories have been buttressed by partial sequence data from newly emergent plant and animal Y chromosomes, but they have not been tested in older, highly evolved Y chromosomes such as that of humans. Here we finished sequencing of the male-specific region of the Y chromosome (MSY) in our closest living relative, the chimpanzee, achieving levels of accuracy and completion previously reached for the human MSY. By comparing the MSYs of the two species we show that they differ radically in sequence structure and gene content, indicating rapid evolution during the past 6 million years. The chimpanzee MSY contains twice as many massive palindromes as the human MSY, yet it has lost large fractions of the MSY protein-coding genes and gene families present in the last common ancestor. We suggest that the extraordinary divergence of the chimpanzee and human MSYs was driven by four synergistic factors: the prominent role of the MSY in sperm production, 'genetic hitchhiking' effects in the absence of meiotic crossing over, frequent ectopic recombination within the MSY, and species differences in mating behaviour. Although genetic decay may be the principal dynamic in the evolution of newly emergent Y chromosomes, wholesale renovation is the paramount theme in the continuing evolution of chimpanzee, human and perhaps other older MSYs.


Are sequence family variants useful for identifying deletions in the human Y chromosome?

  • Sjoerd Repping‎ et al.
  • American journal of human genetics‎
  • 2004‎

No abstract available


Assessing matched normal and tumor pairs in next-generation sequencing studies.

  • Liang Goh‎ et al.
  • PloS one‎
  • 2011‎

Next generation sequencing technology has revolutionized the study of cancers. Through matched normal-tumor pairs, it is now possible to identify genome-wide germline and somatic mutations. The generation and analysis of the data requires rigorous quality checks and filtering, and the current analytical pipeline is constantly undergoing improvements. We noted however that in analyzing matched pairs, there is an implicit assumption that the sequenced data are matched, without any quality check such as those implemented in association studies. There are serious implications in this assumption as identification of germline and rare somatic variants depend on the normal sample being the matched pair. Using a genetics concept on measuring relatedness between individuals, we demonstrate that the matchedness of tumor pairs can be quantified and should be included as part of a quality protocol in analysis of sequenced data. Despite the mutation changes in cancer samples, matched tumor-normal pairs are still relatively similar in sequence compared to non-matched pairs. We demonstrate that the approach can be used to assess the mutation landscape between individuals.


Massively parallel sequencing of patients with intellectual disability, congenital anomalies and/or autism spectrum disorders with a targeted gene panel.

  • Maggie Brett‎ et al.
  • PloS one‎
  • 2014‎

Developmental delay and/or intellectual disability (DD/ID) affects 1-3% of all children. At least half of these are thought to have a genetic etiology. Recent studies have shown that massively parallel sequencing (MPS) using a targeted gene panel is particularly suited for diagnostic testing for genetically heterogeneous conditions. We report on our experiences with using massively parallel sequencing of a targeted gene panel of 355 genes for investigating the genetic etiology of eight patients with a wide range of phenotypes including DD/ID, congenital anomalies and/or autism spectrum disorder. Targeted sequence enrichment was performed using the Agilent SureSelect Target Enrichment Kit and sequenced on the Illumina HiSeq2000 using paired-end reads. For all eight patients, 81-84% of the targeted regions achieved read depths of at least 20×, with average read depths overlapping targets ranging from 322× to 798×. Causative variants were successfully identified in two of the eight patients: a nonsense mutation in the ATRX gene and a canonical splice site mutation in the L1CAM gene. In a third patient, a canonical splice site variant in the USP9X gene could likely explain all or some of her clinical phenotypes. These results confirm the value of targeted MPS for investigating DD/ID in children for diagnostic purposes. However, targeted gene MPS was less likely to provide a genetic diagnosis for children whose phenotype includes autism.


Epigenomic profiling of primary gastric adenocarcinoma reveals super-enhancer heterogeneity.

  • Wen Fong Ooi‎ et al.
  • Nature communications‎
  • 2016‎

Regulatory enhancer elements in solid tumours remain poorly characterized. Here we apply micro-scale chromatin profiling to survey the distal enhancer landscape of primary gastric adenocarcinoma (GC), a leading cause of global cancer mortality. Integrating 110 epigenomic profiles from primary GCs, normal gastric tissues and cell lines, we highlight 36,973 predicted enhancers and 3,759 predicted super-enhancers respectively. Cell-line-defined super-enhancers can be subclassified by their somatic alteration status into somatic gain, loss and unaltered categories, each displaying distinct epigenetic, transcriptional and pathway enrichments. Somatic gain super-enhancers are associated with complex chromatin interaction profiles, expression patterns correlated with patient outcome and dense co-occupancy of the transcription factors CDX2 and HNF4α. Somatic super-enhancers are also enriched in genetic risk SNPs associated with cancer predisposition. Our results reveal a genome-wide reprogramming of the GC enhancer and super-enhancer landscape during tumorigenesis, contributing to dysregulated local and regional cancer gene expression.


Selection Has Countered High Mutability to Preserve the Ancestral Copy Number of Y Chromosome Amplicons in Diverse Human Lineages.

  • Levi S Teitz‎ et al.
  • American journal of human genetics‎
  • 2018‎

Amplicons-large, highly identical segmental duplications-are a prominent feature of mammalian Y chromosomes. Although they encode genes essential for fertility, these amplicons differ vastly between species, and little is known about the selective constraints acting on them. Here, we develop computational tools to detect amplicon copy number with unprecedented accuracy from high-throughput sequencing data. We find that one-sixth (16.9%) of 1,216 males from the 1000 Genomes Project have at least one deleted or duplicated amplicon. However, each amplicon's reference copy number is scrupulously maintained among divergent branches of the Y chromosome phylogeny, including the ancient branch A00, indicating that the reference copy number is ancestral to all modern human Y chromosomes. Using phylogenetic analyses and simulations, we demonstrate that this pattern of variation is incompatible with neutral evolution and instead displays hallmarks of mutation-selection balance. We also observe cases of amplicon rescue, in which deleted amplicons are restored through subsequent duplications. These results indicate that, contrary to the lack of constraint suggested by the differences between species, natural selection has suppressed amplicon copy number variation in diverse human lineages.


Amenable epigenetic traits of dental pulp stem cells underlie high capability of xeno-free episomal reprogramming.

  • Srijaya Thekkeparambil Chandrabose‎ et al.
  • Stem cell research & therapy‎
  • 2018‎

While a shift towards non-viral and animal component-free methods of generating induced pluripotent stem (iPS) cells is preferred for safer clinical applications, there is still a shortage of reliable cell sources and protocols for efficient reprogramming.


The human Y and inactive X chromosomes similarly modulate autosomal gene expression.

  • Adrianna K San Roman‎ et al.
  • Cell genomics‎
  • 2024‎

Somatic cells of human males and females have 45 chromosomes in common, including the "active" X chromosome. In males the 46th chromosome is a Y; in females it is an "inactive" X (Xi). Through linear modeling of autosomal gene expression in cells from individuals with zero to three Xi and zero to four Y chromosomes, we found that Xi and Y impact autosomal expression broadly and with remarkably similar effects. Studying sex chromosome structural anomalies, promoters of Xi- and Y-responsive genes, and CRISPR inhibition, we traced part of this shared effect to homologous transcription factors-ZFX and ZFY-encoded by Chr X and Y. This demonstrates sex-shared mechanisms by which Xi and Y modulate autosomal expression. Combined with earlier analyses of sex-linked gene expression, our studies show that 21% of all genes expressed in lymphoblastoid cells or fibroblasts change expression significantly in response to Xi or Y chromosomes.


Regionally-specified second trimester fetal neural stem cells reveals differential neurogenic programming.

  • Yiping Fan‎ et al.
  • PloS one‎
  • 2014‎

Neural stem/progenitor cells (NSC) have the potential for treatment of a wide range of neurological diseases such as Parkinson Disease and multiple sclerosis. Currently, NSC have been isolated only from hippocampus and subventricular zone (SVZ) of the adult brain. It is not known whether NSC can be found in all parts of the developing mid-trimester central nervous system (CNS) when the brain undergoes massive transformation and growth. Multipotent NSC from the mid-trimester cerebra, thalamus, SVZ, hippocampus, thalamus, cerebellum, brain stem and spinal cord can be derived and propagated as clonal neurospheres with increasing frequencies with increasing gestations. These NSC can undergo multi-lineage differentiation both in vitro and in vivo, and engraft in a developmental murine model. Regionally-derived NSC are phenotypically distinct, with hippocampal NSC having a significantly higher neurogenic potential (53.6%) over other sources (range of 0%-27.5%, p<0.004). Whole genome expression analysis showed differential gene expression between these regionally-derived NSC, which involved the Notch, epidermal growth factor as well as interleukin pathways. We have shown the presence of phenotypically-distinct regionally-derived NSC from the mid-trimester CNS, which may reflect the ontological differences occurring within the CNS. Aside from informing on the role of such cells during fetal growth, they may be useful for different cellular therapy applications.


Individualised multiplexed circulating tumour DNA assays for monitoring of tumour presence in patients after colorectal cancer surgery.

  • Sarah B Ng‎ et al.
  • Scientific reports‎
  • 2017‎

Circulating tumour DNA (ctDNA) has the potential to be a specific biomarker for the monitoring of tumours in patients with colorectal cancer (CRC). Here, our aim was to develop a personalised surveillance strategy to monitor the clinical course of CRC after surgery. We developed patient-specific ctDNA assays based on multiplexed detection of somatic mutations identified from patient primary tumours, and applied them to detect ctDNA in 44 CRC patients, analysing a total of 260 plasma samples. We found that ctDNA detection correlated with clinical events - it is detectable in pre-operative but not post-operative plasma, and also in patients with recurrent CRC. We also detected ctDNA in 11 out of 15 cases at or before clinical or radiological recurrence of CRC, indicating the potential of our assay for early detection of metastasis. We further present data from a patient with multiple primary cancers to demonstrate the specificity of our assays to distinguish between CRC recurrence and a second primary cancer. Our approach can complement current methods for surveillance of CRC by adding an individualised biological component, allowing us not only to point to the presence of residual or recurrent disease, but also attribute it to the original cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: