Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 34 papers

Critical role for hypothalamic mTOR activity in energy balance.

  • Hiroyuki Mori‎ et al.
  • Cell metabolism‎
  • 2009‎

The mammalian target of rapamycin (mTOR) promotes anabolic cellular processes in response to growth factors and metabolic cues. The TSC1 and TSC2 tumor suppressors are major upstream inhibitory regulators of mTOR signaling. Mice with Rip2/Cre-mediated deletion of Tsc1 (Rip-Tsc1cKO mice) developed hyperphagia and obesity, suggesting that hypothalamic disruption (for which Rip2/Cre is well known) of Tsc1 may dysregulate feeding circuits via mTOR activation. Indeed, Rip-Tsc1cKO mice displayed increased mTOR signaling and enlarged neuron cell size in a number of hypothalamic populations, including Pomc neurons. Furthermore, Tsc1 deletion with Pomc/Cre (Pomc-Tsc1cKO mice) resulted in dysregulation of Pomc neurons and hyperphagic obesity. Treatment with the mTOR inhibitor, rapamycin, ameliorated the hyperphagia, obesity, and the altered Pomc neuronal morphology in developing or adult Pomc-Tsc1cKO mice, and cessation of treatment reinstated these phenotypes. Thus, ongoing mTOR activation in Pomc neurons blocks the catabolic function of these neurons to promote nutrient intake and increased adiposity.


Direct innervation of GnRH neurons by metabolic- and sexual odorant-sensing leptin receptor neurons in the hypothalamic ventral premammillary nucleus.

  • Rebecca L Leshan‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2009‎

Leptin acts via its receptor (LepRb) on specific CNS neurons to signal the adequacy of long-term energy stores, thereby permitting the expenditure of resources on energy-intensive processes such as reproduction. The ventral premammillary nucleus of the hypothalamus (PMv), which has been implicated in the stimulation of gonadotropin release by olfactory cues, contains numerous LepRb neurons, suggesting a potential role for LepRb PMv neurons in transmitting both metabolic and odorant signals to the neuroendocrine reproductive system. Indeed, Fos immunoreactivity and electrophysiologic recordings revealed the direct activation of LepRb PMv neurons by leptin, and exposure to odors from mice of the opposite sex promoted Fos immunoreactivity (Fos-IR) in many LepRb PMv neurons. To determine the regions innervated by the LepRb PMv neurons, we used two novel cre-activated tract-tracing systems in Lepr(cre) animals; data from these systems and from standard tracing techniques revealed that LepRb PMv neurons project to a subset of the regions, including the preoptic area, that are innervated by the PMv as a whole. Furthermore, the retrograde accumulation in LepRb PMv neurons of a trans-synaptic tracer from GnRH neurons revealed the direct innervation of GnRH neurons by many LepRb PMv neurons. Thus, LepRb PMv neurons sense metabolic and sexual odorant cues and project to the rostral hypothalamus to directly innervate GnRH neurons. These results are consistent with a role for LepRb PMv neurons in regulating the reproductive axis in response to metabolic and odorant stimuli.


Leptin modulates nutrient reward via inhibitory galanin action on orexin neurons.

  • Amanda Laque‎ et al.
  • Molecular metabolism‎
  • 2015‎

Leptin modulates food reward via central leptin receptor (LepRb) expressing neurons. Food reward requires stimulation of midbrain dopamine neurons and is modulated by central leptin action, but the exact central mechanisms remain unclear. Stimulatory and inhibitory leptin actions on dopamine neurons have been reported, e.g. by indirect actions on orexin neurons or via direct innervation of dopamine neurons in the ventral tegmental area.


Roux-en-Y Gastric Bypass Surgery-Induced Weight Loss and Metabolic Improvements Are Similar in TGR5-Deficient and Wildtype Mice.

  • Zheng Hao‎ et al.
  • Obesity surgery‎
  • 2018‎

Roux-en-Y gastric bypass surgery (RYGB) remains one of the most effective treatments for obesity and type 2 diabetes. Despite this, the mechanisms through which it acts are still not well understood. Bile acid signaling through the transmembrane G-protein-coupled receptor TGR5 has been shown to have significant effects on metabolism and has recently been reported to be necessary for the full effects of vertical sleeve gastrectomy (VSG), a bariatric surgery with similar effects to RYGB. The goal of the current study is therefore to investigate the role of bile acid signaling through TGR5 to see if it is necessary to obtain the full effects of RYGB.


FGF21 is required for protein restriction to extend lifespan and improve metabolic health in male mice.

  • Cristal M Hill‎ et al.
  • Nature communications‎
  • 2022‎

Dietary protein restriction is increasingly recognized as a unique approach to improve metabolic health, and there is increasing interest in the mechanisms underlying this beneficial effect. Recent work indicates that the hormone FGF21 mediates the metabolic effects of protein restriction in young mice. Here we demonstrate that protein restriction increases lifespan, reduces frailty, lowers body weight and adiposity, improves physical performance, improves glucose tolerance, and alters various metabolic markers within the serum, liver, and adipose tissue of wildtype male mice. Conversely, mice lacking FGF21 fail to exhibit metabolic responses to protein restriction in early life, and in later life exhibit early onset of age-related weight loss, reduced physical performance, increased frailty, and reduced lifespan. These data demonstrate that protein restriction in aging male mice exerts marked beneficial effects on lifespan and metabolic health and that a single metabolic hormone, FGF21, is essential for the anti-aging effect of this dietary intervention.


Leptin and insulin act on POMC neurons to promote the browning of white fat.

  • Garron T Dodd‎ et al.
  • Cell‎
  • 2015‎

The primary task of white adipose tissue (WAT) is the storage of lipids. However, "beige" adipocytes also exist in WAT. Beige adipocytes burn fat and dissipate the energy as heat, but their abundance is diminished in obesity. Stimulating beige adipocyte development, or WAT browning, increases energy expenditure and holds potential for combating metabolic disease and obesity. Here, we report that insulin and leptin act together on hypothalamic neurons to promote WAT browning and weight loss. Deletion of the phosphatases PTP1B and TCPTP enhanced insulin and leptin signaling in proopiomelanocortin neurons and prevented diet-induced obesity by increasing WAT browning and energy expenditure. The coinfusion of insulin plus leptin into the CNS or the activation of proopiomelanocortin neurons also increased WAT browning and decreased adiposity. Our findings identify a homeostatic mechanism for coordinating the status of energy stores, as relayed by insulin and leptin, with the central control of WAT browning.


Roux-en-Y gastric bypass surgery is effective in fibroblast growth factor-21 deficient mice.

  • Christopher D Morrison‎ et al.
  • Molecular metabolism‎
  • 2016‎

The mechanisms by which bariatric surgeries so effectively and lastingly reduce body weight and normalize metabolic dysfunction are not well understood. Fibroblast growth fator-21 (FGF21) is a key regulator of metabolism and is currently considered for treatment of obesity. Although elevated by acute food deprivation, it is downregulated after weight loss induced by chronic calorie restriction but not after Roux-en-Y gastric bypass surgery. Therefore, the goal of the present study was to assess the role of FGF21-signaling in the beneficial effects of Roux-en-Y gastric bypass surgery (RYGB).


The PYY/Y2R-Deficient Mouse Responds Normally to High-Fat Diet and Gastric Bypass Surgery.

  • Brandon Boland‎ et al.
  • Nutrients‎
  • 2019‎

The gut hormone peptide YY (PYY) secreted from intestinal L-cells has been implicated in the mechanisms of satiation via Y2-receptor (Y2R) signaling in the brain and periphery and is a major candidate for mediating the beneficial effects of bariatric surgery on appetite and body weight.


FGF21 Signals Protein Status to the Brain and Adaptively Regulates Food Choice and Metabolism.

  • Cristal M Hill‎ et al.
  • Cell reports‎
  • 2019‎

Reduced dietary protein intake induces adaptive physiological changes in macronutrient preference, energy expenditure, growth, and glucose homeostasis. We demonstrate that deletion of the FGF21 co-receptor βKlotho (Klb) from the brain produces mice that are unable to mount a physiological response to protein restriction, an effect that is replicated by whole-body deletion of FGF21. Mice forced to consume a low-protein diet exhibit reduced growth, increased energy expenditure, and a resistance to diet-induced obesity, but the loss of FGF21 signaling in the brain completely abrogates that response. When given access to a higher protein alternative, protein-restricted mice exhibit a shift toward protein-containing foods, and central FGF21 signaling is essential for that response. FGF21 is an endocrine signal linking the liver and brain, which regulates adaptive, homeostatic changes in metabolism and feeding behavior during protein restriction.


Gastric bypass surgery in lean adolescent mice prevents diet-induced obesity later in life.

  • Michael B Mumphrey‎ et al.
  • Scientific reports‎
  • 2019‎

Gastric bypass surgery is the most effective treatment and is often the only option for subjects with severe obesity. However, investigation of critical molecular mechanisms involved has been hindered by confounding of specific effects of surgery and side effects associated with acute surgical trauma. Here, we dissociate the two components by carrying out surgery in the lean state and testing its effectiveness to prevent diet-induced obesity later in life. Body weight and composition of female mice with RYGB performed at 6 weeks of age were not significantly different from sham-operated and age-matched non-surgical mice at the time of high-fat diet exposure 12 weeks after surgery. These female mice were completely protected from high-fat diet-induced obesity and accompanying metabolic impairments for up to 50 weeks. Similar effects were seen in male mice subjected to RYGB at 5-6 weeks, although growth was slightly inhibited and protection from diet-induced obesity was less complete. The findings confirm that RYGB does not indiscriminately lower body weight but specifically prevents excessive diet-induced obesity and ensuing metabolic impairments. This prevention of obesity model should be crucial for identifying the molecular mechanisms underlying gastric bypass surgery.


Low protein-induced increases in FGF21 drive UCP1-dependent metabolic but not thermoregulatory endpoints.

  • Cristal M Hill‎ et al.
  • Scientific reports‎
  • 2017‎

Dietary protein restriction increases adipose tissue uncoupling protein 1 (UCP1), energy expenditure and food intake, and these effects require the metabolic hormone fibroblast growth factor 21 (FGF21). Here we test whether the induction of energy expenditure during protein restriction requires UCP1, promotes a resistance to cold stress, and is dependent on the concomitant hyperphagia. Wildtype, Ucp1-KO and Fgf21-KO mice were placed on control and low protein (LP) diets to assess changes in energy expenditure, food intake and other metabolic endpoints. Deletion of Ucp1 blocked LP-induced increases in energy expenditure and food intake, and exacerbated LP-induced weight loss. While LP diet increased energy expenditure and Ucp1 expression in an FGF21-dependent manner, neither LP diet nor the deletion of Fgf21 influenced sensitivity to acute cold stress. Finally, LP-induced energy expenditure occurred even in the absence of hyperphagia. Increased energy expenditure is a primary metabolic effect of dietary protein restriction, and requires both UCP1 and FGF21 but is independent of changes in food intake. However, the FGF21-dependent increase in UCP1 and energy expenditure by LP has no effect on the ability to acutely respond to cold stress, suggesting that LP-induced increases in FGF21 impact metabolic but not thermogenic endpoints.


Ventral tegmental area leptin receptor neurons specifically project to and regulate cocaine- and amphetamine-regulated transcript neurons of the extended central amygdala.

  • Rebecca L Leshan‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2010‎

Leptin acts via its receptor (LepRb) to regulate neural circuits in concert with body energy stores. In addition to acting on a number of hypothalamic structures, leptin modulates the mesolimbic dopamine (DA) system. To determine the sites at which LepRb neurons might directly influence the mesolimbic DA system, we examined the distribution of LepRb neurons and their projections within mesolimbic brain regions. Although the ventral tegmental area (VTA) contains DA LepRb neurons, LepRb neurons are absent from the amygdala and striatum. Also, LepRb-EGFPf mice (which label projections from LepRb neurons throughout the brain) reveal that few LepRb neurons project to the nucleus accumbens (NAc). In contrast, the central amygdala (CeA) and its rostral extension receive copious projections from LepRb neurons. Indeed, LepRb-specific anterograde tracing demonstrates (and retrograde tracing confirms) that VTA LepRb neurons project to the extended CeA (extCeA) but not the NAc. Consistently, leptin promotes cAMP response element-binding protein phosphorylation in the extCeA, but not NAc, of leptin-deficient animals. Furthermore, transgenic mice expressing the trans-synaptic tracer wheat germ agglutinin in LepRb neurons reveal the innervation of CeA cocaine- and amphetamine-regulated transcript (CART) neurons by LepRb neurons, and leptin suppresses the increased CeA CART expression of leptin-deficient animals. Thus, LepRb VTA neurons represent a subclass of VTA DA neurons that specifically innervates and controls the extCeA; we hypothesize that these neurons primarily modulate CeA-directed behaviors.


Leptin acts via leptin receptor-expressing lateral hypothalamic neurons to modulate the mesolimbic dopamine system and suppress feeding.

  • Gina M Leinninger‎ et al.
  • Cell metabolism‎
  • 2009‎

The lateral hypothalamic area (LHA) acts in concert with the ventral tegmental area (VTA) and other components of the mesolimbic dopamine (DA) system to control motivation, including the incentive to feed. The anorexigenic hormone leptin modulates the mesolimbic DA system, although the mechanisms underlying this control have remained incompletely understood. We show that leptin directly regulates a population of leptin receptor (LepRb)-expressing inhibitory neurons in the LHA and that leptin action via these LHA LepRb neurons decreases feeding and body weight. Furthermore, these LHA LepRb neurons innervate the VTA, and leptin action on these neurons restores VTA expression of the rate-limiting enzyme in DA production along with mesolimbic DA content in leptin-deficient animals. Thus, these findings reveal that LHA LepRb neurons link anorexic leptin action to the mesolimbic DA system.


Sympathetic innervation of the mouse kidney and liver arising from prevertebral ganglia.

  • Hayden Torres‎ et al.
  • American journal of physiology. Regulatory, integrative and comparative physiology‎
  • 2021‎

The sympathetic nervous system (SNS) plays a crucial role in the regulation of renal and hepatic functions. Although sympathetic nerves to the kidney and liver have been identified in many species, specific details are lacking in the mouse. In the absence of detailed information of sympathetic prevertebral innervation of specific organs, selective manipulation of a specific function will remain challenging. Despite providing major postganglionic inputs to abdominal organs, limited data are available about the mouse celiac-superior mesenteric complex. We used tyrosine hydroxylase (TH) and dopamine β-hydroxylase (DbH) reporter mice to visualize abdominal prevertebral ganglia. We found that both the TH and DbH reporter mice are useful models for identification of ganglia and nerve bundles. We further tested if the celiac-superior mesenteric complex provides differential inputs to the mouse kidney and liver. The retrograde viral tracer, pseudorabies virus (PRV)-152 was injected into the cortex of the left kidney or the main lobe of the liver to identify kidney-projecting and liver-projecting neurons in the celiac-superior mesenteric complex. iDISCO immunostaining and tissue clearing were used to visualize unprecedented anatomical detail of kidney-related and liver-related postganglionic neurons in the celiac-superior mesenteric complex and aorticorenal and suprarenal ganglia compared with TH-positive neurons. Kidney-projecting neurons were restricted to the suprarenal and aorticorenal ganglia, whereas only sparse labeling was observed in the celiac-superior mesenteric complex. In contrast, liver-projecting postganglionic neurons were observed in the celiac-superior mesenteric complex and aorticorenal and suprarenal ganglia, suggesting spatial separation between the sympathetic innervation of the mouse kidney and liver.


Galanin Regulates Myocardial Mitochondrial ROS Homeostasis and Hypertrophic Remodeling Through GalR2.

  • Frederic Boal‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

The regulatory peptide galanin is broadly distributed in the central nervous systems and peripheral tissues where it modulates numerous physiological and pathological processes through binding to its three G-protein-coupled receptors, GalR1-3. However, the function and identity of the galaninergic system in the heart remain unclear. Therefore, we investigated the expression of the galanin receptors in cardiac cells and tissues and found that GalR2 is the dominant receptor subtype in adult mouse hearts, cardiomyocytes and H9C2 cardiomyoblasts. In vivo, genetic suppression of GalR2 promotes cardiac hypertrophy, fibrosis and mitochondrial oxidative stress in the heart. In vitro, GalR2 silencing by siRNA abolished the beneficial effects of galanin on cell hypertrophy and mitochondrial reactive oxygen species (ROS) production. These findings unravel new insights into the role of galaninergic system in the heart and suggest novel therapeutic strategies in heart disease.


Combined loss of GLP-1R and Y2R does not alter progression of high-fat diet-induced obesity or response to RYGB surgery in mice.

  • Brandon B Boland‎ et al.
  • Molecular metabolism‎
  • 2019‎

Understanding the mechanisms underlying the remarkable beneficial effects of gastric bypass surgery is important for the development of non-surgical therapies or less invasive surgeries in the fight against obesity and metabolic disease. Although the intestinal L-cell hormones glucagon-like peptide-1 (GLP-1) and peptide tyrosine-tyrosine (PYY) have attracted the most attention, direct tests in humans and rodents with pharmacological blockade or genetic deletion of either the GLP1-receptor (GLP1R) or the Y2-receptor (Y2R) were unable to confirm their critical roles in the beneficial effects gastric bypass surgery on body weight and glucose homeostasis. However, new awareness of the power of combinatorial therapies in the treatment of metabolic disease would suggest that combined blockade of more than one signaling pathway may be necessary to reverse the beneficial effects of bariatric surgery.


Phenotyping of nNOS neurons in the postnatal and adult female mouse hypothalamus.

  • Konstantina Chachlaki‎ et al.
  • The Journal of comparative neurology‎
  • 2017‎

Neurons expressing nitric oxide (NO) synthase (nNOS) and thus capable of synthesizing NO play major roles in many aspects of brain function. While the heterogeneity of nNOS-expressing neurons has been studied in various brain regions, their phenotype in the hypothalamus remains largely unknown. Here we examined the distribution of cells expressing nNOS in the postnatal and adult female mouse hypothalamus using immunohistochemistry. In both adults and neonates, nNOS was largely restricted to regions of the hypothalamus involved in the control of bodily functions, such as energy balance and reproduction. Labeled cells were found in the paraventricular, ventromedial, and dorsomedial nuclei as well as in the lateral area of the hypothalamus. Intriguingly, nNOS was seen only after the second week of life in the arcuate nucleus of the hypothalamus (ARH). The most dense and heavily labeled population of cells was found in the organum vasculosum laminae terminalis (OV) and the median preoptic nucleus (MEPO), where most of the somata of the neuroendocrine neurons releasing GnRH and controlling reproduction are located. A great proportion of nNOS-immunoreactive neurons in the OV/MEPO and ARH were seen to express estrogen receptor (ER) α. Notably, almost all ERα-immunoreactive cells of the OV/MEPO also expressed nNOS. Moreover, the use of EYFPVglut2 , EYFPVgat , and GFPGad67 transgenic mouse lines revealed that, like GnRH neurons, most hypothalamic nNOS neurons have a glutamatergic phenotype, except for nNOS neurons of the ARH, which are GABAergic. Altogether, these observations are consistent with the proposed role of nNOS neurons in physiological processes.


Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice.

  • Daniel Kroeger‎ et al.
  • Nature communications‎
  • 2018‎

The preoptic area (POA) is necessary for sleep, but the fundamental POA circuits have remained elusive. Previous studies showed that galanin (GAL)- and GABA-producing neurons in the ventrolateral preoptic nucleus (VLPO) express cFos after periods of increased sleep and innervate key wake-promoting regions. Although lesions in this region can produce insomnia, high frequency photostimulation of the POAGAL neurons was shown to paradoxically cause waking, not sleep. Here we report that photostimulation of VLPOGAL neurons in mice promotes sleep with low frequency stimulation (1-4 Hz), but causes conduction block and waking at frequencies above 8 Hz. Further, optogenetic inhibition reduces sleep. Chemogenetic activation of VLPOGAL neurons confirms the increase in sleep, and also reduces body temperature. In addition, chemogenetic activation of VLPOGAL neurons induces short-latency sleep in an animal model of insomnia. Collectively, these findings establish a causal role of VLPOGAL neurons in both sleep induction and heat loss.


Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies.

  • Pradeep S Rajendran‎ et al.
  • Nature communications‎
  • 2019‎

Heart rate is under the precise control of the autonomic nervous system. However, the wiring of peripheral neural circuits that regulate heart rate is poorly understood. Here, we develop a clearing-imaging-analysis pipeline to visualize innervation of intact hearts in 3D and employed a multi-technique approach to map parasympathetic and sympathetic neural circuits that control heart rate in mice. We identify cholinergic neurons and noradrenergic neurons in an intrinsic cardiac ganglion and the stellate ganglia, respectively, that project to the sinoatrial node. We also report that the heart rate response to optogenetic versus electrical stimulation of the vagus nerve displays different temporal characteristics and that vagal afferents enhance parasympathetic and reduce sympathetic tone to the heart via central mechanisms. Our findings provide new insights into neural regulation of heart rate, and our methodology to study cardiac circuits can be readily used to interrogate neural control of other visceral organs.


IGFBP-2 partly mediates the early metabolic improvements caused by bariatric surgery.

  • Justine Faramia‎ et al.
  • Cell reports. Medicine‎
  • 2021‎

Insulin-like growth factor-binding protein (IGFBP)-2 is a circulating biomarker of cardiometabolic health. Here, we report that circulating IGFBP-2 concentrations robustly increase after different bariatric procedures in humans, reaching higher levels after biliopancreatic diversion with duodenal switch (BPD-DS) than after Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG). This increase is closely associated with insulin sensitization. In mice and rats, BPD-DS and RYGB operations also increase circulating IGFBP-2 levels, which are not affected by SG or caloric restriction. In mice, Igfbp2 deficiency significantly impairs surgery-induced loss in adiposity and early improvement in insulin sensitivity but does not affect long-term enhancement in glucose homeostasis. This study demonstrates that the modulation of circulating IGFBP-2 may play a role in the early improvement of insulin sensitivity and loss of adiposity brought about by bariatric surgery.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: