2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

Characterization of vB_SauM-fRuSau02, a Twort-Like Bacteriophage Isolated from a Therapeutic Phage Cocktail.

  • Katarzyna Leskinen‎ et al.
  • Viruses‎
  • 2017‎

Staphylococcus aureus is a commensal and pathogenic bacterium that causes infections in humans and animals. It is a major cause of nosocomial infections worldwide. Due to increasing prevalence of multidrug resistance, alternative methods to eradicate the pathogen are necessary. In this respect, polyvalent staphylococcal myoviruses have been demonstrated to be excellent candidates for phage therapy. Here we present the characterization of the bacteriophage vB_SauM-fRuSau02 (fRuSau02) that was isolated from a commercial Staphylococcus bacteriophage cocktail produced by Microgen (Moscow, Russia). The genomic analysis revealed that fRuSau02 is very closely related to the phage MSA6, and possesses a large genome (148,464 bp), with typical modular organization and a low G+C (30.22%) content. It can therefore be classified as a new virus among the genus Twortlikevirus. The genome contains 236 predicted genes, 4 of which were interrupted by insertion sequences. Altogether, 78 different structural and virion-associated proteins were identified from purified phage particles by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The host range of fRuSau02 was tested with 135 strains, including 51 and 54 Staphylococcus aureus isolates from humans and pigs, respectively, and 30 coagulase-negative Staphylococcus strains of human origin. All clinical S. aureus strains were at least moderately sensitive to the phage, while only 39% of the pig strains were infected. Also, some strains of Staphylococcus intermedius, Staphylococcus lugdunensis, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus saprophyticus and Staphylococcus pseudointer were sensitive. We conclude that fRuSau02, a phage therapy agent in Russia, can serve as an alternative to antibiotic therapy against S. aureus.


Bacteriophage Mu integration in yeast and mammalian genomes.

  • Anja O Paatero‎ et al.
  • Nucleic acids research‎
  • 2008‎

Genomic parasites have evolved distinctive lifestyles to optimize replication in the context of the genomes they inhabit. Here, we introduced new DNA into eukaryotic cells using bacteriophage Mu DNA transposition complexes, termed 'transpososomes'. Following electroporation of transpososomes and selection for marker gene expression, efficient integration was verified in yeast, mouse and human genomes. Although Mu has evolved in prokaryotes, strong biases were seen in the target site distributions in eukaryotic genomes, and these biases differed between yeast and mammals. In Saccharomyces cerevisiae transposons accumulated outside of genes, consistent with selection against gene disruption. In mouse and human cells, transposons accumulated within genes, which previous work suggests is a favorable location for efficient expression of selectable markers. Naturally occurring transposons and viruses in yeast and mammals show related, but more extreme, targeting biases, suggesting that they are responding to the same pressures. These data help clarify the constraints exerted by genome structure on genomic parasites, and illustrate the wide utility of the Mu transpososome technology for gene transfer in eukaryotic cells.


Isolation and characterization of three novel Acinetobacter baumannii phages from Beninese hospital wastewater.

  • Anna Kolsi‎ et al.
  • Archives of virology‎
  • 2023‎

Acinetobacter baumannii is an opportunistic pathogen that is mostly associated with hospital-acquired infections. The rapid emergence of multi- and pan-drug-resistant Acinetobacter strains poses an increasing challenge in hospitals. Phage therapy offers one treatment option for infections caused by A. baumannii. We isolated three phages from Beninese hospital wastewater - fBenAci001, fBenAci002, and fBenAci003 - that infected clinical A. baumannii strains from Finnish patients. Phylogenetic analysis showed that these phages resemble phages of the genus Friunavirus, family Autographiviridae. The isolated phages meet the requirements set for phages used for phage therapy. However, they were found to have a narrow host range, which may limit their therapeutic use.


A systematic approach to inserting split inteins for Boolean logic gate engineering and basal activity reduction.

  • Trevor Y H Ho‎ et al.
  • Nature communications‎
  • 2021‎

Split inteins are powerful tools for seamless ligation of synthetic split proteins. Yet, their use remains limited because the already intricate split site identification problem is often complicated by the requirement of extein junction sequences. To address this, we augment a mini-Mu transposon-based screening approach and devise the intein-assisted bisection mapping (IBM) method. IBM robustly reveals clusters of split sites on five proteins, converting them into AND or NAND logic gates. We further show that the use of inteins expands functional sequence space for splitting a protein. We also demonstrate the utility of our approach over rational inference of split sites from secondary structure alignment of homologous proteins, and that basal activities of highly active proteins can be mitigated by splitting them. Our work offers a generalizable and systematic route towards creating split protein-intein fusions for synthetic biology.


Phage Treatment Trial to Eradicate LA-MRSA from Healthy Carrier Pigs.

  • Henni Tuomala‎ et al.
  • Viruses‎
  • 2021‎

The increase of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) causes a threat to human health. LA-MRSA can be transmitted from animals to animal caretakers, which may further spread MRSA to communities and health care facilities. The objective of this work was to study the efficacy of phage treatment in the eradication of LA-MRSA from healthy carrier pigs. A total of 19 MRSA -positive weanling pigs were assigned to a test (n = 10) and a control group (n = 9). A phage cocktail containing three Staphylococcus phages, or a control buffer was administered to the nares and skin of the pigs three times every two days, after which the phage and MRSA levels in nasal and skin swab samples were monitored for a three-week period. The sensitivity of the strains isolated during the follow-up period to the phage cocktail and each phage individually was analyzed and the pig sera were tested for antibodies against the phages used in the cocktail. The phage treatment did not cause any side effects to the pigs. Phages were found in the skin and nasal samples on the days following the phage applications, but there was no reduction in the MRSA levels in the sampled animals. Phage-resistant strains or phage-specific antibodies were not detected during the experiment. The MRSA load in these healthy carrier animals was only 10-100 CFU/swab or nasal sample, which was likely below the replication threshold of phages. The effectiveness of phage treatment to eradicate MRSA from the pigs could thus not be (reliably) determined.


Screening of a Haloferax volcanii Transposon Library Reveals Novel Motility and Adhesion Mutants.

  • Georgio Legerme‎ et al.
  • Life (Basel, Switzerland)‎
  • 2016‎

Archaea, like bacteria, use type IV pili to facilitate surface adhesion. Moreover, archaeal flagella-structures required for motility-share a common ancestry with type IV pili. While the characterization of archaeal homologs of bacterial type IV pilus biosynthesis components has revealed important aspects of flagellum and pilus biosynthesis and the mechanisms regulating motility and adhesion in archaea, many questions remain. Therefore, we screened a Haloferax volcanii transposon insertion library for motility mutants using motility plates and adhesion mutants, using an adapted air-liquid interface assay. Here, we identify 20 genes, previously unknown to affect motility or adhesion. These genes include potential novel regulatory genes that will help to unravel the mechanisms underpinning these processes. Both screens also identified distinct insertions within the genomic region lying between two chemotaxis genes, suggesting that chemotaxis not only plays a role in archaeal motility, but also in adhesion. Studying these genes, as well as hypothetical genes hvo_2512 and hvo_2876-also critical for both motility and adhesion-will likely elucidate how these two systems interact. Furthermore, this study underscores the usefulness of the transposon library to screen other archaeal cellular processes for specific phenotypic defects.


Universal platform for quantitative analysis of DNA transposition.

  • Maria I Pajunen‎ et al.
  • Mobile DNA‎
  • 2010‎

Completed genome projects have revealed an astonishing diversity of transposable genetic elements, implying the existence of novel element families yet to be discovered from diverse life forms. Concurrently, several better understood transposon systems have been exploited as efficient tools in molecular biology and genomics applications. Characterization of new mobile elements and improvement of the existing transposition technology platforms warrant easy-to-use assays for the quantitative analysis of DNA transposition.


Molecular Factors of Hypochlorite Tolerance in the Hypersaline Archaeon Haloferax volcanii.

  • Miguel Gomez‎ et al.
  • Genes‎
  • 2018‎

Halophilic archaea thrive in hypersaline conditions associated with desiccation, ultraviolet (UV) irradiation and redox active compounds, and thus are naturally tolerant to a variety of stresses. Here, we identified mutations that promote enhanced tolerance of halophilic archaea to redox-active compounds using Haloferax volcanii as a model organism. The strains were isolated from a library of random transposon mutants for growth on high doses of sodium hypochlorite (NaOCl), an agent that forms hypochlorous acid (HOCl) and other redox acid compounds common to aqueous environments of high concentrations of chloride. The transposon insertion site in each of twenty isolated clones was mapped using the following: (i) inverse nested two-step PCR (INT-PCR) and (ii) semi-random two-step PCR (ST-PCR). Genes that were found to be disrupted in hypertolerant strains were associated with lysine deacetylation, proteasomes, transporters, polyamine biosynthesis, electron transfer, and other cellular processes. Further analysis revealed a ΔpsmA1 (α1) markerless deletion strain that produces only the α2 and β proteins of 20S proteasomes was hypertolerant to hypochlorite stress compared with wild type, which produces α1, α2, and β proteins. The results of this study provide new insights into archaeal tolerance of redox active compounds such as hypochlorite.


Mso1p regulates membrane fusion through interactions with the putative N-peptide-binding area in Sec1p domain 1.

  • Marion Weber‎ et al.
  • Molecular biology of the cell‎
  • 2010‎

Sec1p/Munc18 (SM) family proteins regulate SNARE complex function in membrane fusion through their interactions with syntaxins. In addition to syntaxins, only a few SM protein interacting proteins are known and typically, their binding modes with SM proteins are poorly characterized. We previously identified Mso1p as a Sec1p-binding protein and showed that it is involved in membrane fusion regulation. Here we demonstrate that Mso1p and Sec1p interact at sites of exocytosis and that the Mso1p-Sec1p interaction site depends on a functional Rab GTPase Sec4p and its GEF Sec2p. Random and targeted mutagenesis of Sec1p, followed by analysis of protein interactions, indicates that Mso1p interacts with Sec1p domain 1 and that this interaction is important for membrane fusion. In many SM family proteins, domain 1 binds to a N-terminal peptide of a syntaxin family protein. The Sec1p-interacting syntaxins Sso1p and Sso2p lack the N-terminal peptide. We show that the putative N-peptide binding area in Sec1p domain 1 is important for Mso1p binding, and that Mso1p can interact with Sso1p and Sso2p. Our results suggest that Mso1p mimics N-peptide binding to facilitate membrane fusion.


YerA41, a Yersinia ruckeri Bacteriophage: Determination of a Non-Sequencable DNA Bacteriophage Genome via RNA-Sequencing.

  • Katarzyna Leskinen‎ et al.
  • Viruses‎
  • 2020‎

YerA41 is a Myoviridae bacteriophage that was originally isolated due its ability to infect Yersinia ruckeri bacteria, the causative agent of enteric redmouth disease of salmonid fish. Several attempts to determine its genomic DNA sequence using traditional and next generation sequencing technologies failed, indicating that the phage genome is modified in such a way that it is an unsuitable template for PCR amplification and for conventional sequencing. To determine the YerA41 genome sequence, we performed RNA-sequencing from phage-infected Y. ruckeri cells at different time points post-infection. The host-genome specific reads were subtracted and de novo assembly was performed on the remaining unaligned reads. This resulted in nine phage-specific scaffolds with a total length of 143 kb that shared only low level and scattered identity to known sequences deposited in DNA databases. Annotation of the sequences revealed 201 predicted genes, most of which found no homologs in the databases. Proteome studies identified altogether 63 phage particle-associated proteins. The RNA-sequencing data were used to characterize the transcriptional control of YerA41 and to investigate its impact on the bacterial gene expression. Overall, our results indicate that RNA-sequencing can be successfully used to obtain the genomic sequence of non-sequencable phages, providing simultaneous information about the phage-host interactions during the process of infection.


The Removal of Endo- and Enterotoxins From Bacteriophage Preparations.

  • Ville Hietala‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

The production of phages for therapeutic purposes demands fast, efficient and scalable purification procedures. Phage lysates have a wide range of impurities, of which endotoxins of gram-negative bacteria and protein toxins produced by many pathogenic bacterial species are harmful to humans. The highest allowed endotoxin concentration for parenterally applied medicines is 5 EU/kg/h. The aim of this study was to evaluate the feasibility of different purification methods in endotoxin and protein toxin removal in the production of phage preparations for clinical use. In the purification assays, we utilized three phages: Escherichia phage vB_EcoM_fHoEco02, Acinetobacter phage vB_ApiM_fHyAci03, and Staphylococcus phage vB_SauM_fRuSau02. The purification methods tested in the study were precipitation with polyethylene glycol, ultracentrifugation, ultrafiltration, anion exchange chromatography, octanol extraction, two different endotoxin removal columns, and different combinations thereof. The efficiency of the applied purification protocols was evaluated by measuring phage titer and either endotoxins or staphylococcal enterotoxins A and C (SEA and SEC, respectively) from samples taken from different purification steps. The most efficient procedure in endotoxin removal was the combination of ultrafiltration and EndoTrap HD affinity column, which was able to reduce the endotoxin-to-phage ratio of vB_EcoM_fHoEco02 lysate from 3.5 × 104 Endotoxin Units (EU)/109 plaque forming units (PFU) to 0.09 EU/109 PFU. The combination of ultrafiltration and anion exchange chromatography resulted in ratio 96 EU/109 PFU, and the addition of octanol extraction step into this procedure still reduced this ratio threefold. The other methods tested either resulted to less efficient endotoxin removal or required the use of harmful chemicals that should be avoided when producing phage preparations for medical use. Ultrafiltration with 100,000 MWCO efficiently removed enterotoxins from vB_SauM_fRuSau02 lysate (from 1.3 to 0.06 ng SEA/109 PFU), and anion exchange chromatography reduced the enterotoxin concentration below 0.25 ng/ml, the detection limit of the assay.


Characterization and genome analysis of Escherichia phage fBC-Eco01, isolated from wastewater in Tunisia.

  • Emna Grami‎ et al.
  • Archives of virology‎
  • 2023‎

The rise of antibiotic resistance in bacterial strains has led to vigorous exploration for alternative treatments. To this end, phage therapy has been revisited, and it is gaining increasing attention, as it may represent an efficient alternative for treating multiresistant pathogenic bacteria. Phage therapy is considered safe, and phages do not infect eukaryotic cells. There have been many studies investigating phage-host bacteria interactions and the ability of phages to target specific hosts. Escherichia coli is the causative agent of a multitude of infections, ranging from urinary tract infections to sepsis, with growing antibiotic resistance. In this study, we characterized the Escherichia phage fBC-Eco01, which was isolated from a water sample collected at Oued, Tunis. Electron microscopy showed that fBC-Eco01 phage particles have siphovirus morphology, with an icosahedral head of 61 ± 3 nm in diameter and a non-contractile tail of 94 ± 2 nm in length and 12 ± 0.9 nm in width. The genome of fBC-Eco01 is a linear double-stranded DNA of 43.466 bp with a GC content of 50.4%. Comparison to databases allowed annotation of the functions to 39 of the 78 predicted gene products. A single-step growth curve revealed that fBC-Eco01 has a latent period of 30 minutes and a burst size of 175 plaque-forming units (PFU) per infected cell. Genomic analysis indicated that fBC-Eco01 is a member of the subfamily Guernseyvirinae. It is most closely related to a group of phages of the genus Kagunavirus that infect Enterobacter, Raoultella, and Escherichia strains.


A method to sequence and quantify DNA integration for monitoring outcome in gene therapy.

  • Troy Brady‎ et al.
  • Nucleic acids research‎
  • 2011‎

Human genetic diseases have been successfully corrected by integration of functional copies of the defective genes into human cells, but in some cases integration of therapeutic vectors has activated proto-oncogenes and contributed to leukemia. For this reason, extensive efforts have focused on analyzing integration site populations from patient samples, but the most commonly used methods for recovering newly integrated DNA suffer from severe recovery biases. Here, we show that a new method based on phage Mu transposition in vitro allows convenient and consistent recovery of integration site sequences in a form that can be analyzed directly using DNA barcoding and pyrosequencing. The method also allows simple estimation of the relative abundance of gene-modified cells from human gene therapy subjects, which has previously been lacking but is crucial for detecting expansion of cell clones that may be a prelude to adverse events.


Flexibility in MuA transposase family protein structures: functional mapping with scanning mutagenesis and sequence alignment of protein homologues.

  • Tiina S Rasila‎ et al.
  • PloS one‎
  • 2012‎

MuA transposase protein is a member of the retroviral integrase superfamily (RISF). It catalyzes DNA cleavage and joining reactions via an initial assembly and subsequent structural transitions of a protein-DNA complex, known as the Mu transpososome, ultimately attaching transposon DNA to non-specific target DNA. The transpososome functions as a molecular DNA-modifying machine and has been used in a wide variety of molecular biology and genetics/genomics applications. To analyze structure-function relationships in MuA action, a comprehensive pentapeptide insertion mutagenesis was carried out for the protein. A total of 233 unique insertion variants were generated, and their activity was analyzed using a quantitative in vivo DNA transposition assay. The results were then correlated with the known MuA structures, and the data were evaluated with regard to the protein domain function and transpososome development. To complement the analysis with an evolutionary component, a protein sequence alignment was produced for 44 members of MuA family transposases. Altogether, the results pinpointed those regions, in which insertions can be tolerated, and those where insertions are harmful. Most insertions within the subdomains Iγ, IIα, IIβ, and IIIα completely destroyed the transposase function, yet insertions into certain loop/linker regions of these subdomains increased the protein activity. Subdomains Iα and IIIβ were largely insertion-tolerant. The comprehensive structure-function data set will be useful for designing MuA transposase variants with improved properties for biotechnology/genomics applications, and is informative with regard to the function of RISF proteins in general.


Integrins are not essential for entry of coxsackievirus A9 into SW480 human colon adenocarcinoma cells.

  • Outi Heikkilä‎ et al.
  • Virology journal‎
  • 2016‎

Coxsackievirus A9 (CV-A9) is a pathogenic enterovirus type within the family Picornaviridae. CV-A9 infects A549 human epithelial lung carcinoma cells by attaching to the αVβ6 integrin receptor through a highly conserved Arg-Gly-Asp (RGD) motif, which is located at the exposed carboxy-terminus of the capsid protein VP1 detected in all studied clinical isolates. However, genetically-modified CV-A9 that lacks the RGD motif (CV-A9-RGDdel) has been shown to be infectious in some cell lines but not in A549, suggesting that RGD-mediated integrin binding is not always essential for efficient entry of CV-A9.


Transposition-based method for the rapid generation of gene-targeting vectors to produce Cre/Flp-modifiable conditional knock-out mice.

  • Hilkka Turakainen‎ et al.
  • PloS one‎
  • 2009‎

Conditional gene targeting strategies are progressively used to study gene function tissue-specifically and/or at a defined time period. Instrumental to all of these strategies is the generation of targeting vectors, and any methodology that would streamline the procedure would be highly beneficial. We describe a comprehensive transposition-based strategy to produce gene-targeting vectors for the generation of mouse conditional alleles. The system employs a universal cloning vector and two custom-designed mini-Mu transposons. It produces targeting constructions directly from BAC clones, and the alleles generated are modifiable by Cre and Flp recombinases. We demonstrate the applicability of the methodology by modifying two mouse genes, Chd22 and Drapc1. This straightforward strategy should be readily suitable for high-throughput targeting vector production.


Two distinct regions in the model protein Peb1 are critical for its heterologous transport out of Escherichia coli.

  • Lena Anton‎ et al.
  • Microbial cell factories‎
  • 2010‎

Escherichia coli is frequently the first-choice host organism in expression of heterologous recombinant proteins in basic research as well as in production of commercial, therapeutic polypeptides. Especially the secretion of proteins into the culture medium of E. coli is advantageous compared to intracellular production due to the ease in recovery of the recombinant protein. Since E. coli naturally is a poor secretor of proteins, a few strategies for optimization of extracellular secretion have been described. We have previously reported efficient secretion of the diagnostically interesting model protein Peb1 of Campylobacter jejuni into the growth medium of Escherichia coli strain MKS12 (ΔfliCfliD). To generate a more detailed understanding of the molecular mechanisms behind this interesting heterologous secretion system with biotechnological implications, we here analyzed further the transport of Peb1 in the E. coli host.


Mu transpososome activity-profiling yields hyperactive MuA variants for highly efficient genetic and genome engineering.

  • Tiina S Rasila‎ et al.
  • Nucleic acids research‎
  • 2018‎

The phage Mu DNA transposition system provides a versatile species non-specific tool for molecular biology, genetic engineering and genome modification applications. Mu transposition is catalyzed by MuA transposase, with DNA cleavage and integration reactions ultimately attaching the transposon DNA to target DNA. To improve the activity of the Mu DNA transposition machinery, we mutagenized MuA protein and screened for hyperactivity-causing substitutions using an in vivo assay. The individual activity-enhancing substitutions were mapped onto the MuA-DNA complex structure, containing a tetramer of MuA transposase, two Mu end segments and a target DNA. This analysis, combined with the varying effect of the mutations in different assays, implied that the mutations exert their effects in several ways, including optimizing protein-protein and protein-DNA contacts. Based on these insights, we engineered highly hyperactive versions of MuA, by combining several synergistically acting substitutions located in different subdomains of the protein. Purified hyperactive MuA variants are now ready for use as second-generation tools in a variety of Mu-based DNA transposition applications. These variants will also widen the scope of Mu-based gene transfer technologies toward medical applications such as human gene therapy. Moreover, the work provides a platform for further design of custom transposases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: