Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

A cell fitness selection model for neuronal survival during development.

  • Yiqiao Wang‎ et al.
  • Nature communications‎
  • 2019‎

Developmental cell death plays an important role in the construction of functional neural circuits. In vertebrates, the canonical view proposes a selection of the surviving neurons through stochastic competition for target-derived neurotrophic signals, implying an equal potential for neurons to compete. Here we show an alternative cell fitness selection of neurons that is defined by a specific neuronal heterogeneity code. Proprioceptive sensory neurons that will undergo cell death and those that will survive exhibit different molecular signatures that are regulated by retinoic acid and transcription factors, and are independent of the target and neurotrophins. These molecular features are genetically encoded, representing two distinct subgroups of neurons with contrasted functional maturation states and survival outcome. Thus, in this model, a heterogeneous code of intrinsic cell fitness in neighboring neurons provides differential competitive advantage resulting in the selection of cells with higher capacity to survive and functionally integrate into neural networks.


Neuronal heterogeneity and stereotyped connectivity in the auditory afferent system.

  • Charles Petitpré‎ et al.
  • Nature communications‎
  • 2018‎

Spiral ganglion (SG) neurons of the cochlea convey all auditory inputs to the brain, yet the cellular and molecular complexity necessary to decode the various acoustic features in the SG has remained unresolved. Using single-cell RNA sequencing, we identify four types of SG neurons, including three novel subclasses of type I neurons and the type II neurons, and provide a comprehensive genetic framework that define their potential synaptic communication patterns. The connectivity patterns of the three subclasses of type I neurons with inner hair cells and their electrophysiological profiles suggest that they represent the intensity-coding properties of auditory afferents. Moreover, neuron type specification is already established at birth, indicating a neuronal diversification process independent of neuronal activity. Thus, this work provides a transcriptional catalog of neuron types in the cochlea, which serves as a valuable resource for dissecting cell-type-specific functions of dedicated afferents in auditory perception and in hearing disorders.


Plasma Exosome-Derived SENP1 May Be a Potential Prognostic Predictor for Melanoma.

  • Hejuan Hu‎ et al.
  • Frontiers in oncology‎
  • 2021‎

To evaluate plasma exosome-derived SUMO-specific protease (SENP)1 levels and assess their prognostic value in melanoma.


PRDM12 Is Required for Initiation of the Nociceptive Neuron Lineage during Neurogenesis.

  • Luca Bartesaghi‎ et al.
  • Cell reports‎
  • 2019‎

The sensation of pain is essential for the preservation of the functional integrity of the body. However, the key molecular regulators necessary for the initiation of the development of pain-sensing neurons have remained largely unknown. Here, we report that, in mice, inactivation of the transcriptional regulator PRDM12, which is essential for pain perception in humans, results in a complete absence of the nociceptive lineage, while proprioceptive and touch-sensitive neurons remain. Mechanistically, our data reveal that PRDM12 is required for initiation of neurogenesis and activation of a cascade of downstream pro-neuronal transcription factors, including NEUROD1, BRN3A, and ISL1, in the nociceptive lineage while it represses alternative fates other than nociceptors in progenitor cells. Our results thus demonstrate that PRDM12 is necessary for the generation of the entire lineage of pain-initiating neurons.


Muscle-selective RUNX3 dependence of sensorimotor circuit development.

  • Yiqiao Wang‎ et al.
  • Development (Cambridge, England)‎
  • 2019‎

The control of all our motor outputs requires constant monitoring by proprioceptive sensory neurons (PSNs) that convey continuous muscle sensory inputs to the spinal motor network. Yet the molecular programs that control the establishment of this sensorimotor circuit remain largely unknown. The transcription factor RUNX3 is essential for the early steps of PSNs differentiation, making it difficult to study its role during later aspects of PSNs specification. Here, we conditionally inactivate Runx3 in PSNs after peripheral innervation and identify that RUNX3 is necessary for maintenance of cell identity of only a subgroup of PSNs, without discernable cell death. RUNX3 also controls the sensorimotor connection between PSNs and motor neurons at limb level, with muscle-by-muscle variable sensitivities to the loss of Runx3 that correlate with levels of RUNX3 in PSNs. Finally, we find that muscles and neurotrophin 3 signaling are necessary for maintenance of RUNX3 expression in PSNs. Hence, a transcriptional regulator that is crucial for specifying a generic PSN type identity after neurogenesis is later regulated by target muscle-derived signals to contribute to the specialized aspects of the sensorimotor connection selectivity.


Antecedent soil moisture prior to freezing can affect quantity, composition and stability of soil dissolved organic matter during thaw.

  • Haohao Wu‎ et al.
  • Scientific reports‎
  • 2017‎

There are large amounts of dissolved organic matter (DOM) released into the soil during spring thaw, but its bioavailability and components are still unknown. The quantity, composition and stability of DOM in water extracts of forest soils during thaw were studied after two-month freezing with 9 levels of soil moisture ranging from 10% to 90% water-filled pore space (WFPS), by measuring soil carbon dioxide (CO2) flux, biodegradable dissolved organic carbon (BDOC) and nitrogen (BDON), ultraviolet absorbance and parallel factor analysis of fluorescence excitation-emission matrices. Concentrations of BDOC, BDON, DOC and DON were lowest around 30% WFPS and relatively higher and lower soil moisture both increased DOM and BDOM concentrations in thawing soil. With increasing WFPS, the dominant component of soil DOM changed from humic acid-like substances to fulvic acid-like substances and the biological origin of DOM increased gradually. The protein-like component accounted for 8-20% of soil DOM and was affected by vegetation type and WFPS singly and interactively. The results implied that forest soils with more than 50% WFPS before winter freezing could release large amounts of fulvic acid-like DOM, which would be easily biodegraded and emitted as CO2 or run off with ground water during spring snow thaw.


A Novel Natural Influenza A H1N1 Virus Neuraminidase Inhibitory Peptide Derived from Cod Skin Hydrolysates and Its Antiviral Mechanism.

  • Jianpeng Li‎ et al.
  • Marine drugs‎
  • 2018‎

In this paper, a novel natural influenza A H1N1 virus neuraminidase (NA) inhibitory peptide derived from cod skin hydrolysates was purified and its antiviral mechanism was explored. From the hydrolysates, novel efficient NA-inhibitory peptides were purified by a sequential approach utilizing an ultrafiltration membrane (5000 Da), sephadex G-15 gel column and reverse-phase high-performance liquid chromatography (RP-HPLC). The amino acid sequence of the pure peptide was determined by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) was PGEKGPSGEAGTAGPPGTPGPQGL, with a molecular weight of 2163 Da. The analysis of the Lineweacer⁻Burk model indicated that the peptide was a competitive NA inhibitor with Ki of 0.29 mM and could directly bind free enzymes. In addition, docking studies suggested that hydrogen binding might be the driving force for the binding affinity of PGEKGPSGEAGTAGPPGTPGPQGL to NA. The cytopathic effect reduction assay showed that the peptide PGEKGPSGEAGTAGPPGTPGPQGL protected Madin⁻Darby canine kidney (MDCK) cells from viral infection and reduced the viral production in a dose-dependent manner. The EC50 value was 471 ± 12 μg/mL against H1N1. Time-course analysis showed that PGEKGPSGEAGTAGPPGTPGPQGL inhibited influenza virus in the early stage of the infectious cycle. The virus titers assay indicated that the NA-inhibitory peptide PGEKGPSGEAGTAGPPGTPGPQGL could directly affect the virus toxicity and adsorption by host cells, further proving that the peptide had an anti-viral effect with multiple target sites. The activity of NA-inhibitory peptide was almost inactivated during the simulated in vitro gastrointestinal digestion, suggesting that oral administration is not recommended. The peptide PGEKGPSGEAGTAGPPGTPGPQGL acts as a neuraminidase blocker to inhibit influenza A virus in MDCK cells. Thus, the peptide PGEKGPSGEAGTAGPPGTPGPQGL has potential utility in the treatment of the influenza virus infection.


Biogenic Polyphosphate Nanoparticles from a Marine Cyanobacterium Synechococcus sp. PCC 7002: Production, Characterization, and Anti-Inflammatory Properties In Vitro.

  • Guangxin Feng‎ et al.
  • Marine drugs‎
  • 2018‎

Probiotic-derived polyphosphates have attracted interest as potential therapeutic agents to improve intestinal health. The current study discovered the intracellular accumulation of polyphosphates in a marine cyanobacterium Synechococcus sp. PCC 7002 as nano-sized granules. The maximum accumulation of polyphosphates in Synechococcus sp. PCC 7002 was found at the late logarithmic growth phase when the medium contained 0.74 mM of KH₂PO₄, 11.76 mM of NaNO₃, and 30.42 mM of Na₂SO₄. Biogenic polyphosphate nanoparticles (BPNPs) were obtained intact from the algae cells by hot water extraction, and were purified to remove the organic impurities by Sephadex G-100 gel filtration. By using 100 kDa ultrafiltration, BPNPs were fractionated into the larger and smaller populations with diameters ranging between 30⁻70 nm and 10⁻30 nm, respectively. 4',6-diamidino-2-phenylindole fluorescence and orthophosphate production revealed that a minor portion of BPNPs (about 14⁻18%) were degraded during simulated gastrointestinal digestion. In vitro studies using lipopolysaccharide-activated RAW264.7 cells showed that BPNPs inhibited cyclooxygenase-2, inducible nitric oxide (NO) synthase expression, and the production of proinflammatory mediators, including NO, tumor necrosis factor-α, interleukin-6, and interleukin-1β through suppressing the Toll-like receptor 4/NF-κB signaling pathway. Overall, there is promise in the use of the marine cyanobacterium Synechococcus sp. PCC 7002 to produce BPNPs, an anti-inflammatory postbiotic.


Gelatin versus its two major degradation products, prolyl-hydroxyproline and glycine, as supportive therapy in experimental colitis in mice.

  • Suqin Zhu‎ et al.
  • Food science & nutrition‎
  • 2018‎

Gelatin is an anti-inflammatory dietary component, and its predominant metabolites entering circulation are prolyl-hydroxyproline (Pro-Hyp) and glycine. We evaluated the protective effects of orally administered gelatin, glycine, and Pro-Hyp 10:3:0.8 (w/w/w) against dextran sodium sulfate (DSS)-induced colitis in mice. According to clinical, histological, and biochemical parameters, they exhibited significant activities in the order of gelatin < glycine < Pro-Hyp. Gelatin prevented the DSS-induced increase in interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the colon, rather than in peripheral blood. Glycine and Pro-Hyp attenuated the DSS-induced rise in colonic IL-6 and TNF-α, as well as peripheral IL-1β, IL-6, and TNF-α. Hematologic results show the attenuation of DSS-induced leukocytosis and lymphocytosis by glycine and Pro-Hyp, rather than gelatin. These findings suggest that glycine and Pro-Hyp constitute the material basis for gelatin's anticolitis efficacy, and they have better anticolitis activities and distinct mechanisms of action when ingested as free compounds than as part of gelatin.


Overproduction, purification, and characterization of nanosized polyphosphate bodies from Synechococcus sp. PCC 7002.

  • Fengzheng Gao‎ et al.
  • Microbial cell factories‎
  • 2018‎

Inorganic polyphosphate bodies (PPB) have recently been linked to a variety of functions in mammalian cells. To improve the yield of PPB from Synechococcus sp. PCC 7002 and characterize its form, in this study, a recombinant plasmid containing a polyphosphate kinase (ppk) gene was generated and transformed into Synechococcus sp. PCC 7002.


Platinum Nanoparticles As A Therapeutic Agent Against Dextran Sodium Sulfate-Induced Colitis In Mice.

  • Suqin Zhu‎ et al.
  • International journal of nanomedicine‎
  • 2019‎

This study aimed to evaluate the anti-colitis potential of platinum nanoparticles (PtNPs).


Single cell RNA sequencing identifies early diversity of sensory neurons forming via bi-potential intermediates.

  • Louis Faure‎ et al.
  • Nature communications‎
  • 2020‎

Somatic sensation is defined by the existence of a diversity of primary sensory neurons with unique biological features and response profiles to external and internal stimuli. However, there is no coherent picture about how this diversity of cell states is transcriptionally generated. Here, we use deep single cell analysis to resolve fate splits and molecular biasing processes during sensory neurogenesis in mice. Our results identify a complex series of successive and specific transcriptional changes in post-mitotic neurons that delineate hierarchical regulatory states leading to the generation of the main sensory neuron classes. In addition, our analysis identifies previously undetected early gene modules expressed long before fate determination although being clearly associated with defined sensory subtypes. Overall, the early diversity of sensory neurons is generated through successive bi-potential intermediates in which synchronization of relevant gene modules and concurrent repression of competing fate programs precede cell fate stabilization and final commitment.


Distinct subtypes of proprioceptive dorsal root ganglion neurons regulate adaptive proprioception in mice.

  • Haohao Wu‎ et al.
  • Nature communications‎
  • 2021‎

Proprioceptive neurons (PNs) are essential for the proper execution of all our movements by providing muscle sensory feedback to the central motor network. Here, using deep single cell RNAseq of adult PNs coupled with virus and genetic tracings, we molecularly identify three main types of PNs (Ia, Ib and II) and find that they segregate into eight distinct subgroups. Our data unveil a highly sophisticated organization of PNs into discrete sensory input channels with distinct spatial distribution, innervation patterns and molecular profiles. Altogether, these features contribute to finely regulate proprioception during complex motor behavior. Moreover, while Ib- and II-PN subtypes are specified around birth, Ia-PN subtypes diversify later in life along with increased motor activity. We also show Ia-PNs plasticity following exercise training, suggesting Ia-PNs are important players in adaptive proprioceptive function in adult mice.


Plasma exosomal caveolin-1 predicts Poor Prognosis in Ovarian Cancer.

  • Lijuan Yang‎ et al.
  • Journal of Cancer‎
  • 2021‎

Objective: In this study, we aimed to evaluate the levels of plasma exosomal caveolin-1(CAV1) and determine its prognostic value in ovarian cancer patients. Patients and Methods: Exosome-rich fractions were isolated from the plasma of 155 patients with ovarian cancer. TEM, NTA and western blot analysis were used to confirm the exosome integrity and purification. Results: Compared with healthy controls, plasma exosomal CAV1 levels in ovarian cancer patient were significantly down-regulated (P < 0.001). The low plasma levels of exosomal CAV1 in ovarian cancer patient plasma were related to FIGO stages, grades and lymph node metastasis (all P < 0.01). Among all ovarian cancer patients, DFS was worse in patients who had low plasma exosomal CAV1 levels compared with that in patients with high plasma exosomal CAV1 levels (P < 0.001). The OS of patients with low plasma exosomal CAV1 levels was shorter than that in patients with high plasma exosomal CAV1 levels (P < 0.001). The AUROC of plasma exosomal CAV1 was 0.76 (95% CI: 0.68-0.82) for DFS prediction in ovarian cancer patients, with a sensitivity 52.9 (95% CI: 42.8-62.9) and a specificity 88.7 (95% CI: 77.0-95.7). For OS prediction in ovarian cancer patients, the AUROC of plasma exosomal CAV1 was 0.78 (95% CI: 0.70-0.84), with a sensitivity 65.1 (95% CI: 49.1-79.0) and a specificity 81.2 (95% CI: 72.8-88.0). Conclusions: Low exosomal CAV1 levels were closely related to the FIGO stages I/II, low grade, lymph node metastasis and prognosis of ovarian cancer patients. Plasma exosomal CAV1 may be a potential biomarker for the prognosis in ovarian cancer patients.


Cranial irradiation inhibits hippocampal neurogenesis via DNMT1 and DNMT3A.

  • Shengjun Ji‎ et al.
  • Oncology letters‎
  • 2018‎

Impairment of neurogenesis in the hippocampus following whole-brain irradiation is the most important mechanism of radiation-induced cognitive dysfunction. However, the underlying mechanism remains obscure, meaning an ideal therapeutic target has not been identified. Evidence indicates that DNA methylation in neurons regulates synaptic plasticity and neuronal network activity. In the present study, the expression of DNA methyltransferases (DNMTs) in the hippocampus was analyzed to investigate their potential function in radiation-induced neurogenesis impairment. Sprague-Dawley rats were used throughout the present study, apportioned to the following groups: Control, radiation only, zebularine (a DNMT inhibitor) only, and radiation and zebularine together. Immunofluorescence staining revealed that radiation inhibited cellular proliferation and dendritic growth within new neurons of the hippocampus. In addition, western blot analysis demonstrated lower expression levels of DNMT1 and DNMT3A protein following radiation treatment compared with that in the non-irradiated control. Furthermore, compared with the radiation-only group, the radiation and zebularine group had significantly lower cell proliferative abilities, dendritic growth, and DNMT1 and DNMT3A protein levels. The results of the present study indicated that DNMT1 and DNMT3A may be involved in the pathogenesis of whole-brain radiation-induced neurogenesis impairment.


Microalgae polysaccharides ameliorates obesity in association with modulation of lipid metabolism and gut microbiota in high-fat-diet fed C57BL/6 mice.

  • Wei Guo‎ et al.
  • International journal of biological macromolecules‎
  • 2021‎

Microalgae are emerging as a good source of natural nutraceuticals and medicines. This study aims at evaluating the anti-obesity effects of two microalgae polysaccharides (CPS from Chlorella pyrenoidosa and SPS from Spirulina platensis) in high-fat diet (HFD)-induced obese C57BL/6 mice, with β-glucan as a positive control polysaccharide. CPS, SPS and β-glucan were daily administered intragastrically during 10-week HFD feeding, and conferred equally effective protection against overweight, energy imbalance, glucose tolerance impairment, systemic inflammation, dyslipidemia, and fat deposition in the liver and epididymal white adipose tissues. By western blotting analysis of CPT-1, PPARγ and SREBP-1c, those polysaccharides increased lipolysis and decreased lipogenesis in the liver. According to high-throughput sequencing of fecal 16S rRNA, CPS, SPS and β-glucan corrected the HFD-induced gut dysbiosis similarly by increasing beneficial bacteria especially Clostridia, Bacterioidia and Mollicutes and decreasing unfavorable bacteria especially Actinobacteria and Verrucomicrobia and, as revealed by PICRUSt functional analysis, they restored the HFD-induced perturbations in many gut bacterial enzymes and pathways involved in the metabolism of SCFAs, secondary bile acids and trimethylamine, implicating a possible anti-obesity mechanism through gut microbiome-mediated modulation of host lipid metabolism. Microalgae polysaccharides can thus serve as potent alternative food ingredients to improve disease conditions in obese patients.


Increased hippocampal TrkA expression ameliorates cranial radiation‑induced neurogenesis impairment and cognitive deficit via PI3K/AKT signaling.

  • Shengjun Ji‎ et al.
  • Oncology reports‎
  • 2020‎

Cognitive deficit is one of the most serious complications of cranial radiotherapy of head and neck cancers. However, the underlying mechanism of this cognitive impairment remains unclear. In the present study, the role of tropomyosin receptor kinase A (TrkA) and its ligand neurotrophin nerve growth factor (NGF) were investigated following whole‑brain irradiation (WBI). Young male Sprague‑Dawley rats underwent WBI at a single dose of 10 Gy. WBI was determined to result in notable memory decline and substantial neurogenesis impairment in the hippocampus 3 months post‑irradiation. Compared with the control group, TrkA protein expression was greater in irradiated rats 1 week after WBI, which then decreased significantly by the 3‑month time‑point. However, no difference in NGF expression was observed from 1 day to 3 months post‑WBI. Overexpression of hippocampal TrkA in rats using adeno‑associated virus ameliorated memory decline induced by irradiation. Additionally, upregulating TrkA expression rescued irradiation‑induced hippocampal precursor cell proliferation and promoted neurogenesis. PI3K, Akt and ERK1/2 phosphorylation were also revealed to be significantly inhibited by WBI, which was ameliorated by TrkA overexpression. Findings of the present study indicated that the TrkA‑dependent signaling pathway may serve a critical role in radiotherapy‑induced cognitive deficit and impairments in neurogenesis.


Orally administered gold nanoparticles protect against colitis by attenuating Toll-like receptor 4- and reactive oxygen/nitrogen species-mediated inflammatory responses but could induce gut dysbiosis in mice.

  • Suqin Zhu‎ et al.
  • Journal of nanobiotechnology‎
  • 2018‎

Gold nanoparticles (AuNPs) are attracting interest as potential therapeutic agents to treat inflammatory diseases, but their anti-inflammatory mechanism of action is not clear yet. In addition, the effect of orally administered AuNPs on gut microbiota has been overlooked so far. Here, we evaluated the therapeutic and gut microbiota-modulating effects, as well as the anti-inflammatory paradigm, of AuNPs with three different coatings and five difference sizes in experimental mouse colitis and RAW264.7 macrophages.


Novel Natural Angiotensin Converting Enzyme (ACE)-Inhibitory Peptides Derived from Sea Cucumber-Modified Hydrolysates by Adding Exogenous Proline and a Study of Their Structure⁻Activity Relationship.

  • Jianpeng Li‎ et al.
  • Marine drugs‎
  • 2018‎

Natural angiotensin converting enzyme (ACE)-inhibitory peptides, which are derived from marine products, are useful as antihypertensive drugs. Nevertheless, the activities of these natural peptides are relatively low, which limits their applications. The aim of this study was to prepare efficient ACE-inhibitory peptides from sea cucumber-modified hydrolysates by adding exogenous proline according to a facile plastein reaction. When 40% proline (w/w, proline/free amino groups) was added, the modified hydrolysates exhibited higher ACE-inhibitory activity than the original hydrolysates. Among the modified hydrolysates, two novel efficient ACE-inhibitory peptides, which are namely PNVA and PNLG, were purified and identified by a sequential approach combining a sephadex G-15 gel column, reverse-phase high-performance liquid chromatography (RP-HPLC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS), before we conducted confirmatory studies with synthetic peptides. The ACE-inhibitory activity assay showed that PNVA and PNLG exhibited lower IC50 values of 8.18 ± 0.24 and 13.16 ± 0.39 μM than their corresponding truncated analogs (NVA and NLG), respectively. Molecular docking showed that PNVA and PNLG formed a larger number of hydrogen bonds with ACE than NVA and NLG, while the proline at the N-terminal of peptides can affect the orientation of the binding site of ACE. The method developed in this study may potentially be applied to prepare efficient ACE-inhibitory peptides, which may play a key role in hypertension management.


Heterosynaptic plasticity of the visuo-auditory projection requires cholecystokinin released from entorhinal cortex afferents.

  • Wenjian Sun‎ et al.
  • eLife‎
  • 2024‎

The entorhinal cortex is involved in establishing enduring visuo-auditory associative memory in the neocortex. Here we explored the mechanisms underlying this synaptic plasticity related to projections from the visual and entorhinal cortices to the auditory cortex in mice using optogenetics of dual pathways. High-frequency laser stimulation (HFS laser) of the visuo-auditory projection did not induce long-term potentiation. However, after pairing with sound stimulus, the visuo-auditory inputs were potentiated following either infusion of cholecystokinin (CCK) or HFS laser of the entorhino-auditory CCK-expressing projection. Combining retrograde tracing and RNAscope in situ hybridization, we show that Cck expression is higher in entorhinal cortex neurons projecting to the auditory cortex than in those originating from the visual cortex. In the presence of CCK, potentiation in the neocortex occurred when the presynaptic input arrived 200 ms before postsynaptic firing, even after just five trials of pairing. Behaviorally, inactivation of the CCK+ projection from the entorhinal cortex to the auditory cortex blocked the formation of visuo-auditory associative memory. Our results indicate that neocortical visuo-auditory association is formed through heterosynaptic plasticity, which depends on release of CCK in the neocortex mostly from entorhinal afferents.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: