Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,149 papers

Induction of anterior gradient 2 (AGR2) plays a key role in insulin-like growth factor-1 (IGF-1)-induced breast cancer cell proliferation and migration.

  • Zheqi Li‎ et al.
  • Medical oncology (Northwood, London, England)‎
  • 2015‎

Anterior gradient 2 (AGR2) is a promising anti-tumor target associated with estrogen receptor expression and metastatic progression of breast cancer. Insulin-like growth factor-1 (IGF-1) is another potent factor that stimulates breast cancer progression and mediates anti-estrogen drug resistance. However, the precise mechanism and connections between these two factors in breast cancer drug resistance have not been fully elucidated. Here, for the first time, we decipher that IGF-1 remarkably induces AGR2 in the MCF7 cell line, through an estrogen response element (ERE) between -802 and -808 bp and a leucine zipper transcription factor-binding site located between -972 and -982 bp on the AGR2 promoter. We also found that the ERK1/2 and AKT pathways mediate estrogen receptor-α at the upstream of ERE and that the JNK pathway activates the leucine zipper site through the c-Jun/c-Fos complex. Additionally, our data suggest that knockdown of AGR2 reduces IGF-1-induced cell proliferation, migration and cell cycle progression. Therefore, we report that AGR2 is a key modulator involved in IGF-1-induced breast cancer development. We propose that the identification of the mechanism linking the IGF-1/insulin signal and AGR2 promoter activation is important, because it provides insights into the development of anti-breast cancer drugs.


NQO1 Stabilizes p53 in Response to Oncogene-Induced Senescence.

  • Kaiyu Liu‎ et al.
  • International journal of biological sciences‎
  • 2015‎

Cellular senescence is a state of permanent cellular arrest that provides an initial barrier to cell transformation and tumorigenesis. In this study, we report that expression of


Anterior gradient 2 is a binding stabilizer of hypoxia inducible factor-1α that enhances CoCl2 -induced doxorubicin resistance in breast cancer cells.

  • Zheqi Li‎ et al.
  • Cancer science‎
  • 2015‎

Hypoxia inducible factor-1α (HIF-1α) is associated with human breast cancer chemoresistance. Various reports have suggested that multiple pathways are involved in HIF-1α induction and that the molecular mechanisms regulating HIF-1α-induced chemoresistance are still not fully understood. Here, we report that anterior gradient 2 (AGR2), a proposed breast cancer biomarker, is an essential regulator in hypoxia-induced doxorubicin resistance through the binding and stabilization of HIF-1α. Our results show that knockdown of AGR2 in MCF-7 cells leads to the suppression of HIF-1α-induced doxorubicin resistance, whereas elevated levels of AGR2 in MDA-MB-231 cells enhance HIF-1α-induced doxorubicin resistance. AGR2 expression, in turn, is upregulated by the hypoxic induction of HIF-1α at both translational and transcriptional levels via a hypoxia-responsive region from -937 to -912 bp on the AGR2 promoter sequence. By specific binding to HIF-1α, the increased level of intracellular AGR2 stabilizes HIF-1α and delays its proteasomal degradation. Finally, we found that AGR2-stabilized HIF-1α escalates multiple drug resistance protein 1 (MDR1) mRNA levels and limits doxorubicin intake of MCF-7 cells, whereas MCF-7/ADR, a doxorubicin resistant cell line with deficient AGR2 and HIF-1α, acquires wild-type MDR1 overexpression. Our findings, for the first time, describe AGR2 as an important regulator in chemical hypoxia-induced doxorubicin resistance in breast cancer cells, providing a possible explanation for the variable levels of chemoresistance in breast cancers and further validating AGR2 as a potential anti-breast cancer therapeutic target.


NPM1 activates metabolic changes by inhibiting FBP1 while promoting the tumorigenicity of pancreatic cancer cells.

  • Yi Zhu‎ et al.
  • Oncotarget‎
  • 2015‎

The nucleophosmin (NPM1) activates cancer development and progression in many malignant tumors. However, the regulatory role and underlying mechanisms of NPM1 in pancreatic cancer are unknown. In this study, we showed that NPM1 was up-regulated in PDAC, which indicated a poor prognosis. We also identified NPM1 could stimulate aerobic glycolysis and repress fructose-1, 6-bisphosphatase 1 (FBP1) in pancreatic cancer cells. Restoring FBP1 expression partially reversed the tumor-promoting effects of NPM1, while the loss of FBP1 in PDAC tissues was indicative of a poorer prognosis. In sum, NPM1 promotes aerobic glycolysis and tumor progression in patients with pancreatic cancer by inhibiting FBP1.


Loss-of-function mutation of rice SLAC7 decreases chloroplast stability and induces a photoprotection mechanism in rice.

  • Xiaolei Fan‎ et al.
  • Journal of integrative plant biology‎
  • 2015‎

Plants absorb sunlight to power the photochemical reactions of photosynthesis, which can potentially damage the photosynthetic machinery. However, the mechanism that protects chloroplasts from the damage remains unclear. In this work, we demonstrated that rice (Oryza sativa L.) SLAC7 is a generally expressed membrane protein. Loss-of-function of SLAC7 caused continuous damage to the chloroplasts of mutant leaves under normal light conditions. Ion leakage indicators related to leaf damage such as H2 O2 and abscisic acid levels were significantly higher in slac7-1 than in the wild type. Consistently, the photosynthesis efficiency and Fv/Fm ratio of slac7-1 were significantly decreased (similar to photoinhibition). In response to chloroplast damage, slac7-1 altered its leaf morphology (curled or fused leaf) by the synergy between plant hormones and transcriptional factors to decrease the absorption of light, suggesting that a photoprotection mechanism for chloroplast damage was activated in slac7-1. When grown in dark conditions, slac7-1 displayed a normal phenotype. SLAC7 under the control of the AtSLAC1 promoter could partially complement the phenotypes of Arabidopsis slac1 mutants, indicating a partial conservation of SLAC protein functions. These results suggest that SLAC7 is essential for maintaining the chloroplast stability in rice.


Molecular mechanisms of ethanol-associated oro-esophageal squamous cell carcinoma.

  • Yao Liu‎ et al.
  • Cancer letters‎
  • 2015‎

Alcohol drinking is a major etiological factor of oro-esophageal squamous cell carcinoma (OESCC). Both local and systemic effects of ethanol may promote carcinogenesis, especially among chronic alcoholics. However, molecular mechanisms of ethanol-associated OESCC are still not well understood. In this review, we summarize current understandings and propose three mechanisms of ethanol-associated OESCC: (1) Disturbance of systemic metabolism of nutrients: during ethanol metabolism in the liver, systemic metabolism of retinoids, zinc, iron and methyl groups is altered. These nutrients are known to be associated with the development of OESCC. (2) Disturbance of redox metabolism in squamous epithelial cells: when ethanol is metabolized in oro-esophageal squamous epithelial cells, reactive oxygen species are generated and produce oxidative damage. Meanwhile, ethanol may also disturb fatty-acid metabolism in these cells. (3) Disturbance of signaling pathways in squamous epithelial cells: due to its physico-chemical properties, ethanol changes cell membrane fluidity and shape, and may thus impact multiple signaling pathways. Advanced molecular techniques in genomics, epigenomics, metabolomics and microbiomics will help us elucidate how ethanol promotes OESCC.


H2AK119Ub1 and H3K27Me3 in molecular staging for survival prediction of patients with pancreatic ductal adenocarcinoma.

  • Shi Chen‎ et al.
  • Oncotarget‎
  • 2014‎

Polycomb group (PcG) proteins Ring1B and EZH2, which have been characterized as catalyzing the two epigenetic modifications H2AK119 monoubiquitination (H2AK119Ub1) and H3K27 trimethylation (H3K27Me3), are well-known epigenetic silencers implicated in embryonic development and tumorigenesis. However, the status of polycomb-associated histone modifications and their clinical implications in pancreatic cancer remain unclear. Here, we performed immunohistochemistry on tissue microarrays (TMAs) containing 80 pairs of human pancreatic cancer specimens to assess the expression levels of Ring1B, H2AK119Ub1, EZH2, and H3K27Me3 in tumors. More than 50% of the tumor cells showed a high expression of H2AK119Ub1, Ring1B, and EZH2, whereas more than 50% of the tumor cells showed a low level of H3K27Me3. Different expression patterns of H2AK119Ub1 and H3K27Me3 in tumors were negatively correlated (r = -0.247, P = 0.027). Both H2AK119Ub1 and H3K27Me3 independently predicted the clinical prognosis. In particular, a combinatorial pattern of elevated H2AK119Ub1 and decreased H3K27Me3 in tumors was significantly correlated with a poorer prognosis. Furthermore, compared to the tumor, lymph node, metastasis (TNM) staging system, histone modifications can discriminate the survival difference more accurately, especially for patients with stage I or stage II tumors. Simultaneous silencing of Ring1B and EZH2 via shRNA depleted H2AK119Ub1 and H3K27Me3 in the pancreatic cancer cells PanC1 and AsPC1, enhanced HOX gene derepression, and inhibited tumor cell growth in vitro and in tumor xenograft models. These results demonstrated that H2AK119Ub1 and H3K27Me3 cooperate in tumors and are associated with the clinical prognosis in combinatorial patterns. We have proposed that epigenetic modifications may serve as discriminatory biomarkers for molecular staging of pancreatic cancer.


Serpin treatment suppresses inflammatory vascular lesions in temporal artery implants (TAI) from patients with giant cell arteritis.

  • Hao Chen‎ et al.
  • PloS one‎
  • 2015‎

Giant cell arteritis (GCA) and Takayasu's disease are inflammatory vasculitic syndromes (IVS) causing sudden blindness and widespread arterial obstruction and aneurysm formation. Glucocorticoids and aspirin are mainstays of treatment, predominantly targeting T cells. Serp-1, a Myxomavirus-derived serpin, blocks macrophage and T cells in a wide range of animal models. Serp-1 also reduced markers of myocardial injury in a Phase IIa clinical trial for unstable coronary disease. In recent work, we detected improved survival and decreased arterial inflammation in a mouse Herpesvirus model of IVS. Here we examine Serp-1 treatment of human temporal artery (TA) biopsies from patients with suspected TA GCA arteritis after implant (TAI) into the aorta of immunodeficient SCID (severe combined immunodeficiency) mice. TAI positive for arteritis (GCApos) had significantly increased inflammation and plaque when compared to negative TAI (GCAneg). Serp-1 significantly reduced intimal inflammation and CD11b+ cell infiltrates in TAI, with reduced splenocyte Th1, Th17, and Treg. Splenocytes from mice with GCApos grafts had increased gene expression for interleukin-1 beta (IL-1β), IL-17, and CD25 and decreased Factor II. Serp-1 decreased IL-1β expression. In conclusion, GCApos TAI xenografts in mice provide a viable disease model and have increased intimal inflammation as expected and Serp-1 significantly reduces vascular inflammatory lesions with reduced IL-1β.


A KH-domain RNA-binding protein interacts with FIERY2/CTD phosphatase-like 1 and splicing factors and is important for pre-mRNA splicing in Arabidopsis.

  • Tao Chen‎ et al.
  • PLoS genetics‎
  • 2013‎

Eukaryotic genomes encode hundreds of RNA-binding proteins, yet the functions of most of these proteins are unknown. In a genetic study of stress signal transduction in Arabidopsis, we identified a K homology (KH)-domain RNA-binding protein, HOS5 (High Osmotic Stress Gene Expression 5), as required for stress gene regulation and stress tolerance. HOS5 was found to interact with FIERY2/RNA polymerase II (RNAP II) carboxyl terminal domain (CTD) phosphatase-like 1 (FRY2/CPL1) both in vitro and in vivo. This interaction is mediated by the first double-stranded RNA-binding domain of FRY2/CPL1 and the KH domains of HOS5. Interestingly, both HOS5 and FRY2/CPL1 also interact with two novel serine-arginine (SR)-rich splicing factors, RS40 and RS41, in nuclear speckles. Importantly, FRY2/CPL1 is required for the recruitment of HOS5. In fry2 mutants, HOS5 failed to be localized in nuclear speckles but was found mainly in the nucleoplasm. hos5 mutants were impaired in mRNA export and accumulated a significant amount of mRNA in the nuclei, particularly under salt stress conditions. Arabidopsis mutants of all these genes exhibit similar stress-sensitive phenotypes. RNA-seq analyses of these mutants detected significant intron retention in many stress-related genes under salt stress but not under normal conditions. Our study not only identified several novel regulators of pre-mRNA processing as important for plant stress response but also suggested that, in addition to RNAP II CTD that is a well-recognized platform for the recruitment of mRNA processing factors, FRY2/CPL1 may also recruit specific factors to regulate the co-transcriptional processing of certain transcripts to deal with environmental challenges.


Functional inactivation of orexin 1 receptors in the cerebellum disrupts trace eyeblink conditioning and local theta oscillations in guinea pigs.

  • Hao Chen‎ et al.
  • Behavioural brain research‎
  • 2013‎

The cerebellum plays an essential role in motor learning. Recently, orexins, the newfound lateral hypothalamic neuropeptides, have been found to excite Purkinje cells in the cerebellar cortex and neurons in the deep cerebellar nuclei (DCN). However, little is known about their roles in cerebellum-dependent motor learning. Therefore, the present study was designed to investigate the functional significance of hypothalamic orexinergic system during trace eyeblink conditioning, a tractable behavioral model system of cerebellum-dependent motor learning. It was revealed that the orexin 1 receptors (OXR1) were specifically localized on the soma of Purkinje cells and large DCN neurons. Furthermore, interfering with the endogenous orexins' effects on the cerebellum via the selective OXR1 antagonist SB-334867 disrupted the timing rather than the acquisition of trace conditioned eyeblink responses. In addition to the behavioral effects, the SB-334867 prevented the increase in peak amplitude of cerebellar theta oscillations with learning. These results suggest that the endogenous orexins may modulate motor learning via the activation of cerebellar OXR1.


Positive Darwinian selection is a driving force for the diversification of terpenoid biosynthesis in the genus Oryza.

  • Hao Chen‎ et al.
  • BMC plant biology‎
  • 2014‎

Terpenoids constitute the largest class of secondary metabolites made by plants and display vast chemical diversity among and within species. Terpene synthases (TPSs) are the pivotal enzymes for terpenoid biosynthesis that create the basic carbon skeletons of this class. Functional divergence of paralogous and orthologous TPS genes is a major mechanism for the diversification of terpenoid biosynthesis. However, little is known about the evolutionary forces that have shaped the evolution of plant TPS genes leading to terpenoid diversity.


Metastatic tumor evolution and organoid modeling implicate TGFBR2 as a cancer driver in diffuse gastric cancer.

  • Lincoln D Nadauld‎ et al.
  • Genome biology‎
  • 2014‎

Gastric cancer is the second-leading cause of global cancer deaths, with metastatic disease representing the primary cause of mortality. To identify candidate drivers involved in oncogenesis and tumor evolution, we conduct an extensive genome sequencing analysis of metastatic progression in a diffuse gastric cancer. This involves a comparison between a primary tumor from a hereditary diffuse gastric cancer syndrome proband and its recurrence as an ovarian metastasis.


Pyrroloquinoline Quinone Induces Cancer Cell Apoptosis via Mitochondrial-Dependent Pathway and Down-Regulating Cellular Bcl-2 Protein Expression.

  • Zhihui Min‎ et al.
  • Journal of Cancer‎
  • 2014‎

Pyrroloquinoline quinone (PQQ) has been reported as a promising agent that might contribute to tumor cell apoptosis and death, yet little is known on its mechanisms. In current study, the effect of PQQ on cell proliferation and mitochondrial-dependent apoptosis were examined in 3 solid tumor cell lines (A549, Neuro-2A and HCC-LM3). PQQ treatment at low to medium dosage exhibited potent anti-tumor activity on A549 and Neuro-2A cells, while had comparably minimal impact on the viabilities of 2 human normal cell lines (HRPTEpiC and HUVEC). The apoptosis of the 3 tumor cell lines induced by PQQ were increased in a concentration-dependent manner, which might be attributed to the accumulation of intracellular reactive oxygen species (ROS), decline in ATP levels and dissipation of mitochondrial membrane potential (MMP), in conjunction with down-regulation of Bcl-2 protein expression, up-regulation of activated caspase-3, and disturbed phosphorylated MAPK protein levels. PQQ induced tumor cells apoptosis was significantly alleviated by pan-caspase inhibitor Z-VAD-FMK. The present work highlights the potential capability of PQQ as an anti-tumor agent with low toxicity towards normal cells through activating mitochondrial-dependent apoptosis pathways, and warrants its development for cancer therapy.


Development of Novel Glyphosate-Tolerant Japonica Rice Lines: A Step Toward Commercial Release.

  • Ying Cui‎ et al.
  • Frontiers in plant science‎
  • 2016‎

Glyphosate is the most widely used herbicide for its low cost and high efficiency. However, it is rarely applied directly in rice field due to its toxicity to rice. Therefore, glyphosate-tolerant rice can greatly decrease the cost of rice production and provide a more effective weed management strategy. Although, several approaches to develop transgenic rice with glyphosate tolerance have been reported, the agronomic performances of these plants have not been well evaluated, and the feasibility of commercial production has not been confirmed yet. Here, a novel glyphosate-tolerant gene cloned from the bacterium Isoptericola variabilis was identified, codon optimized (designated as I. variabilis-EPSPS (*)), and transferred into Zhonghua11, a widely used japonica rice cultivar. After systematic analysis of the transgene integration via PCR, Southern blot and flanking sequence isolation, three transgenic lines with only one intact I. variabilis-EPSPS (*) expression cassette integrated into intergenic regions were identified. Seed test results showed that the glyphosate tolerance of the transgenic rice was about 240 times that of wild type on plant medium. The glyphosate tolerance of transgenic rice lines was further evaluated based on comprehensive agronomic performances in the field with T3 and T5generations in a 2-year assay, which showed that they were rarely affected by glyphosate even when the dosage was 8400 g ha(-1). To our knowledge, this is the first demonstration of the development of glyphosate-tolerant rice lines based on a comprehensive analysis of agronomic performances in the field. Taken together, the results suggest that the selected glyphosate-tolerant rice lines are highly tolerant to glyphosate and have the possibility of commercial release. I. variabilis-EPSPS (*) also can be a promising candidate gene in other species for developing glyphosate-tolerant crops.


Desferrioxamine reduces ultrahigh-molecular-weight polyethylene-induced osteolysis by restraining inflammatory osteoclastogenesis via heme oxygenase-1.

  • Hui Kang‎ et al.
  • Cell death & disease‎
  • 2016‎

As wear particles-induced osteolysis still remains the leading cause of early implant loosening in endoprosthetic surgery, and promotion of osteoclastogenesis by wear particles has been confirmed to be responsible for osteolysis. Therapeutic agents targeting osteoclasts formation are considered for the treatment of wear particles-induced osteolysis. In the present study, we demonstrated for the first time that desferrioxamine (DFO), a powerful iron chelator, could significantly alleviate osteolysis in an ultrahigh-molecular-weight polyethylene (UHMWPE) particles-induced mice calvaria osteolysis model. Furthermore, DFO attenuated calvaria osteolysis by restraining enhanced inflammatory osteoclastogenesis induced by UHMWPE particles. Consistent with the in vivo results, we found DFO was also able to inhibit osteoclastogenesis in a dose-dependent manner in vitro, as evidenced by reduction of osteoclasts formation and suppression of osteoclast specific genes expression. In addition, DFO dampened osteoclasts differentiation and formation at early stage but not at late stage. Mechanistically, the reduction of osteoclastogenesis by DFO was due to increased heme oxygenase-1 (HO-1) expression, as decreased osteoclasts formation induced by DFO was significantly restored after HO-1 was silenced by siRNA, while HO-1 agonist COPP treatment enhanced DFO-induced osteoclastogenesis inhibition. In addition, blocking of p38 mitogen-activated protein kinase (p38MAPK) signaling pathway promoted DFO-induced HO-1 expression, implicating that p38 signaling pathway was involved in DFO-mediated HO-1 expression. Taken together, our results suggested that DFO inhibited UHMWPE particles-induced osteolysis by restraining inflammatory osteoclastogenesis through upregulation of HO-1 via p38MAPK pathway. Thus, DFO might be used as an innovative and safe therapeutic alternative for treating wear particles-induced aseptic loosening.


Survival after heart transplantation for non-metastatic primary cardiac sarcoma.

  • Hua Li‎ et al.
  • Journal of cardiothoracic surgery‎
  • 2016‎

Heart transplantation is an uncommon treatment for unresectable and non-metastatic primary cardiac sarcomas, and the role of it is unclear. This study aims to offer a survival analysis of it.


Genetic Diversity and Population Structure of Whitebark Pine (Pinus albicaulis Engelm.) in Western North America.

  • Jun-Jun Liu‎ et al.
  • PloS one‎
  • 2016‎

Whitebark pine (WBP, Pinus albicaulis Engelm.) is an endangered conifer species due to heavy mortality from white pine blister rust (WPBR, caused by Cronartium ribicola) and mountain pine beetle (Dendroctonus ponderosae). Information about genetic diversity and population structure is of fundamental importance for its conservation and restoration. However, current knowledge on the genetic constitution and genomic variation is still limited for WBP. In this study, an integrated genomics approach was applied to characterize seed collections from WBP breeding programs in western North America. RNA-seq analysis was used for de novo assembly of the WBP needle transcriptome, which contains 97,447 protein-coding transcripts. Within the transcriptome, single nucleotide polymorphisms (SNPs) were discovered, and more than 22,000 of them were non-synonymous SNPs (ns-SNPs). Following the annotation of genes with ns-SNPs, 216 ns-SNPs within candidate genes with putative functions in disease resistance and plant defense were selected to design SNP arrays for high-throughput genotyping. Among these SNP loci, 71 were highly polymorphic, with sufficient variation to identify a unique genotype for each of the 371 individuals originating from British Columbia (Canada), Oregon and Washington (USA). A clear genetic differentiation was evident among seed families. Analyses of genetic spatial patterns revealed varying degrees of diversity and the existence of several genetic subgroups in the WBP breeding populations. Genetic components were associated with geographic variables and phenotypic rating of WPBR disease severity across landscapes, which may facilitate further identification of WBP genotypes and gene alleles contributing to local adaptation and quantitative resistance to WPBR. The WBP genomic resources developed here provide an invaluable tool for further studies and for exploitation and utilization of the genetic diversity preserved within this endangered conifer and other five-needle pines.


Heads, Shoulders, Elbows, Knees, and Toes: Modular Gdf5 Enhancers Control Different Joints in the Vertebrate Skeleton.

  • Hao Chen‎ et al.
  • PLoS genetics‎
  • 2016‎

Synovial joints are crucial for support and locomotion in vertebrates, and are the frequent site of serious skeletal defects and degenerative diseases in humans. Growth and differentiation factor 5 (Gdf5) is one of the earliest markers of joint formation, is required for normal joint development in both mice and humans, and has been genetically linked to risk of common osteoarthritis in Eurasian populations. Here, we systematically survey the mouse Gdf5 gene for regulatory elements controlling expression in synovial joints. We identify separate regions of the locus that control expression in axial tissues, in proximal versus distal joints in the limbs, and in remarkably specific sub-sets of composite joints like the elbow. Predicted transcription factor binding sites within Gdf5 regulatory enhancers are required for expression in particular joints. The multiple enhancers that control Gdf5 expression in different joints are distributed over a hundred kilobases of DNA, including regions both upstream and downstream of Gdf5 coding exons. Functional rescue tests in mice confirm that the large flanking regions are required to restore normal joint formation and patterning. Orthologs of these enhancers are located throughout the large genomic region previously associated with common osteoarthritis risk in humans. The large array of modular enhancers for Gdf5 provide a new foundation for studying the spatial specificity of joint patterning in vertebrates, as well as new candidates for regulatory regions that may also influence osteoarthritis risk in human populations.


Spinal Cord Stimulation for Refractory Angina Pectoris: A Systematic Review and Meta-analysis.

  • Xiaoxiao Pan‎ et al.
  • The Clinical journal of pain‎
  • 2017‎

Paresthesia-free stimulation such as high frequency and burst have been demonstrated as effective therapies for neuropathic pain. The aim of this meta-analysis was to evaluate the efficacy and safety of conventional spinal cord stimulation (SCS) in the treatment of refractory angina pectoris (RAP).


Embryonic morphogen nodal is associated with progression and poor prognosis of hepatocellular carcinoma.

  • Jing Chen‎ et al.
  • PloS one‎
  • 2014‎

Nodal, a TGF-β-related embryonic morphogen, is involved in multiple biologic processes. However, the expression of Nodal in hepatocellular carcinoma (HCC) and its correlation with tumor angiogenesis, epithelial-mesenchymal transition, and prognosis is unclear.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: