Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33 papers

Baseline Plasma C-Reactive Protein Concentrations and Motor Prognosis in Parkinson Disease.

  • Atsushi Umemura‎ et al.
  • PloS one‎
  • 2015‎

C-reactive protein (CRP), a blood inflammatory biomarker, is associated with the development of Alzheimer disease. In animal models of Parkinson disease (PD), systemic inflammatory stimuli can promote neuroinflammation and accelerate dopaminergic neurodegeneration. However, the association between long-term systemic inflammations and neurodegeneration has not been assessed in PD patients.


Diagnostic accuracy of apparent diffusion coefficient and 123I-metaiodobenzylguanidine for differentiation of multiple system atrophy and Parkinson's disease.

  • Atsushi Umemura‎ et al.
  • PloS one‎
  • 2013‎

It is often hard to differentiate Parkinson's disease (PD) and parkinsonian variant of multiple system atrophy (MSA-P), especially in the early stages. Cardiac sympathetic denervation and putaminal rarefaction are specific findings for PD and MSA-P, respectively.


Genetic polymorphisms of the human PNPLA3 gene are strongly associated with severity of non-alcoholic fatty liver disease in Japanese.

  • Takahisa Kawaguchi‎ et al.
  • PloS one‎
  • 2012‎

Nonalcoholic fatty liver disease (NAFLD) includes a broad range of liver pathologies from simple steatosis to cirrhosis and fibrosis, in which a subtype accompanying hepatocyte degeneration and fibrosis is classified as nonalcoholic steatohepatitis (NASH). NASH accounts for approximately 10-30% of NAFLD and causes a higher frequency of liver-related death, and its progression of NASH has been considered to be complex involving multiple genetic factors interacting with the environment and lifestyle.


FIB-4 Index and Diabetes Mellitus Are Associated with Chronic Kidney Disease in Japanese Patients with Non-Alcoholic Fatty Liver Disease.

  • Yuya Seko‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Non-alcoholic fatty liver disease (NAFLD) is associated with chronic kidney disease (CKD). The aim of this retrospective study was to determine the risk factors for progression of CKD in patients with biopsy-proven NAFLD including patatin-like phospholipase domain containing 3 (PNPLA3) polymorphism. A total of 344 patients with biopsy-proven NAFLD were enrolled consecutively in this study. Multivariate analysis identified males (odds ratio (OR) 5.46), age (per 1 year, OR 1.07), and FIB-4 index (≥1.30, OR 3.85) as factors associated with CKD. Of the 154 patients with a baseline estimated glomerular filtration rate (eGFR) ≥60 mL/min, 30 had a deterioration in CKD stage and 15 developed CKD after 3 years. Multivariate analysis identified diabetes mellitus (OR 2.44) as a risk factor for deterioration in CKD stage, while diabetes mellitus (OR 21.54) and baseline eGFR (per 1 mL/min OR 0.88) were risk factors for development of CKD. PNPLA3 did not affect the change in eGFR. In NAFLD patients, a high FIB-4 index was associated with CKD to increases in the index linked to reductions in eGFR. In order to prevent development of CKD, an appropriate therapy focusing on renal function is needed for NAFLD patients, especially those with diabetes.


Neurocognitive and psychiatric disorders-related axonal degeneration in Parkinson's disease.

  • Christina Andica‎ et al.
  • Journal of neuroscience research‎
  • 2020‎

Neurocognitive and psychiatric disorders have significant consequences for quality of life in patients with Parkinson's disease (PD). In the current study, we evaluated microstructural white matter (WM) alterations associated with neurocognitive and psychiatric disorders in PD using neurite orientation dispersion and density imaging (NODDI) and linked independent component analysis (LICA). The indices of NODDI were compared between 20 and 19 patients with PD with and without neurocognitive and psychiatric disorders, respectively, and 25 healthy controls using tract-based spatial statistics and tract-of-interest analyses. LICA was applied to model inter-subject variability across measures. A widespread reduction in axonal density (indexed by intracellular volume fraction [ICVF]) was demonstrated in PD patients with and without neurocognitive and psychiatric disorders, as compared with healthy controls. Compared with patients without neurocognitive and psychiatric disorders, patients with neurocognitive and psychiatric disorders exhibited more extensive (posterior predominant) decreases in axonal density. Using LICA, ICVF demonstrated the highest contribution (59% weight) to the main effects of diagnosis that reflected widespread decreases in axonal density. These findings suggest that axonal loss is a major factor underlying WM pathology related to neurocognitive and psychiatric disorders in PD, whereas patients with neurocognitive and psychiatric disorders had broader axonal pathology, as compared with those without. LICA suggested that the ICVF can be used as a useful biomarker of microstructural changes in the WM related to neurocognitive and psychiatric disorders in PD.


Effect of Sodium Glucose Cotransporter 2 Inhibitors on Renal Function in Patients with Nonalcoholic Fatty Liver Disease and Type 2 Diabetes in Japan.

  • Kota Yano‎ et al.
  • Diagnostics (Basel, Switzerland)‎
  • 2020‎

Sodium-glucose cotransporter-2 inhibitors (SGLT2I) have been reported to have renal-protective effects in patients with type 2 diabetes (T2DM). This a retrospective study aimed to evaluate the effect of SGLT2I on renal function in patients with nonalcoholic fatty liver disease (NAFLD) and T2DM. We analyzed 69 consecutive patients with a biopsy-proven NAFLD and T2DM with an estimated glomerular filtration rate (eGFR) >60 mL/min. Of these 69 patients, 22 received SGLT2I and 47 were treated without SGLT2I. Liver function and eGFR were analyzed at baseline and after three years. Body mass index, liver function and HbA1c improved significantly in both groups. In the total population, the median eGFR declined from 80.7 mL/min at the baseline to 74.9 mL/min at the end of follow-up. The median eGFR at the baseline/end of follow-up was 81.2/80.4 mL/min in patients treated with SGLT2I and 80.2/70.8 mL/min in patients treated without SGLT2I. Multivariate analysis identified an increased FIB-4 index with an odds ratio (OR) of 4.721, (p = 0.045) and SGLT2I treatment (OR 0.263, p = 0.033) as predictive factors for decreased eGFR. SGLT2I treatment has a protective effect on the renal function for NAFLD with T2DM. A long-term, randomized, controlled trial is warranted to confirm the renal protective effect of SGLT2I in NAFLD patients with T2DM.


Loss of KAP3 decreases intercellular adhesion and impairs intracellular transport of laminin in signet ring cell carcinoma of the stomach.

  • Tomohiro Soda‎ et al.
  • Scientific reports‎
  • 2022‎

Signet-ring cell carcinoma (SRCC) is a unique subtype of gastric cancer that is impaired for cell-cell adhesion. The pathogenesis of SRCC remains unclear. Here, we show that expression of kinesin-associated protein 3 (KAP3), a cargo adaptor subunit of the kinesin superfamily protein 3 (KIF3), a motor protein, is specifically decreased in SRCC of the stomach. CRISPR/Cas9-mediated gene knockout experiments indicated that loss of KAP3 impairs the formation of circumferential actomyosin cables by inactivating RhoA, leading to the weakening of cell-cell adhesion. Furthermore, in KAP3 knockout cells, post-Golgi transport of laminin, a key component of the basement membrane, was inhibited, resulting in impaired basement membrane formation. Together, these findings uncover a potential role for KAP3 in the pathogenesis of SRCC of the stomach.


Bortezomib is an effective enhancer for chemical probe-dependent superoxide detection.

  • Misaki Matsumoto‎ et al.
  • Frontiers in medicine‎
  • 2022‎

Various chemical probes for the detection of reactive oxygen species have been developed to examine oxidative stress associated with different pathologies. L-012, a luminol-based chemiluminescent probe, is widely used to detect extracellular superoxide because of its high sensitivity. We herein demonstrated that the co-application of the peptide boronic acid proteasome inhibitor, bortezomib, with L-012 significantly increased its luminescence without affecting the background. More than a 5-fold increase was detected in the total luminescence of L-012 in both NADPH oxidase-expressing cells and the xanthine oxidase-dependent cell-free superoxide generation system, but not in their background. Therefore, bortezomib increased the signal-to-background ratio and improved the detection of low levels of superoxide. The application of MLN2238, another peptide boronic acid proteasome inhibitor, also enhanced the luminescence of L-012. In contrast, carfilzomib, an epoxyketone proteasome inhibitor, did not increase luminescence, suggesting that the effects of bortezomib depend on the chemical structure of the peptide boronic acid, but not on its pharmacological effects. Bortezomib-induced enhancements appeared to be specific to the detection of superoxide because the detection of H2O2 by Amplex Red/HRP was not affected by the application of bortezomib. In the quantitative detection of the superoxide-specific oxidative product 2-hydroxyethidium (2-OH-E+), the application of bortezomib resulted in a 2-fold increase in the level of 2-OH-E+. Therefore, bortezomib sensitizes the detection of superoxide in both cell-based and cell-free systems, highlighting a novel feature of compounds containing the peptide boronic acid as powerful enhancers for the detection of superoxide.


Convolutional neural network-based segmentation can help in assessing the substantia nigra in neuromelanin MRI.

  • Alice Le Berre‎ et al.
  • Neuroradiology‎
  • 2019‎

This study aimed to evaluate the accuracy and diagnostic test performance of the U-net-based segmentation method in neuromelanin magnetic resonance imaging (NM-MRI) compared to the established manual segmentation method for Parkinson's disease (PD) diagnosis.


White matter and nigral alterations in multiple system atrophy-parkinsonian type.

  • Takashi Ogawa‎ et al.
  • NPJ Parkinson's disease‎
  • 2021‎

Multiple system atrophy (MSA) is classified into two main types: parkinsonian and cerebellar ataxia with oligodendrogliopathy. We examined microstructural alterations in the white matter and the substantia nigra pars compacta (SNc) of patients with MSA of parkinsonian type (MSA-P) using multishell diffusion magnetic resonance imaging (dMRI) and myelin sensitive imaging techniques. Age- and sex-matched patients with MSA-P (n = 21, n = 10 first and second cohorts, respectively), Parkinson's disease patients (n = 19, 17), and healthy controls (n = 20, 24) were enrolled. Magnetization transfer saturation imaging (MT-sat) and dMRI were obtained using 3-T MRI. Measurements obtained from diffusion tensor imaging (DTI), free-water elimination DTI, neurite orientation dispersion and density imaging (NODDI), and MT-sat were compared between groups. Tract-based spatial statistics analysis revealed differences in diffuse white matter alterations in the free-water fractional volume, myelin volume fraction, and intracellular volume fraction between the patients with MSA-P and healthy controls, whereas free-water and MT-sat differences were limited to the middle cerebellar peduncle in comparison with those with Parkinson's disease. Region-of-interest analysis of white matter and SNc revealed significant differences in the middle and inferior cerebellar peduncle, pontine crossing tract, corticospinal tract, and SNc between the MSA-P and healthy controls and/or Parkinson's disease patients. Our results shed light on alterations to brain microstructure in MSA.


NF-κB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria.

  • Zhenyu Zhong‎ et al.
  • Cell‎
  • 2016‎

Nuclear factor κB (NF-κB), a key activator of inflammation, primes the NLRP3-inflammasome for activation by inducing pro-IL-1β and NLRP3 expression. NF-κB, however, also prevents excessive inflammation and restrains NLRP3-inflammasome activation through a poorly defined mechanism. We now show that NF-κB exerts its anti-inflammatory activity by inducing delayed accumulation of the autophagy receptor p62/SQSTM1. External NLRP3-activating stimuli trigger a form of mitochondrial (mt) damage that is caspase-1- and NLRP3-independent and causes release of direct NLRP3-inflammasome activators, including mtDNA and mtROS. Damaged mitochondria undergo Parkin-dependent ubiquitin conjugation and are specifically recognized by p62, which induces their mitophagic clearance. Macrophage-specific p62 ablation causes pronounced accumulation of damaged mitochondria and excessive IL-1β-dependent inflammation, enhancing macrophage death. Therefore, the "NF-κB-p62-mitophagy" pathway is a macrophage-intrinsic regulatory loop through which NF-κB restrains its own inflammation-promoting activity and orchestrates a self-limiting host response that maintains homeostasis and favors tissue repair.


ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development.

  • Hayato Nakagawa‎ et al.
  • Cancer cell‎
  • 2014‎

Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of viral hepatitis, insulin resistance, hepatosteatosis, and nonalcoholic steatohepatitis (NASH), disorders that increase risk of hepatocellular carcinoma (HCC). To determine whether and how ER stress contributes to obesity-driven hepatic tumorigenesis we fed wild-type (WT) and MUP-uPA mice, in which hepatocyte ER stress is induced by plasminogen activator expression, with high-fat diet. Although both strains were equally insulin resistant, the MUP-uPA mice exhibited more liver damage, more immune infiltration, and increased lipogenesis and, as a result, displayed classical NASH signs and developed typical steatohepatitic HCC. Both NASH and HCC development were dependent on TNF produced by inflammatory macrophages that accumulate in the MUP-uPA liver in response to hepatocyte ER stress.


Delirium and high fever are associated with subacute motor deterioration in Parkinson disease: a nested case-control study.

  • Atsushi Umemura‎ et al.
  • PloS one‎
  • 2014‎

In Parkinson disease (PD), systemic inflammation caused by respiratory infections such as pneumonia frequently occurs, often resulting in delirium in the advanced stages of this disease. Delirium can lead to cognitive and functional decline, institutionalization, and mortality, especially in the elderly. Inflammation causes rapid worsening of PD motor symptoms and signs, sometimes irreversibly in some, but not all, patients.


Cerebral microbleeds and blood pressure abnormalities in Parkinson's disease.

  • Kazuo Yamashiro‎ et al.
  • eNeurologicalSci‎
  • 2018‎

Blood pressure abnormalities are frequently observed in patients with Parkinson's disease (PD), and are associated with cerebrovascular diseases such as white matter hyperintensities and carotid atherosclerosis. We assessed the relationship between blood pressure abnormalities and cerebral microbleeds (CMBs), a marker of cerebral small vessel disease, in 128 patients with PD. We examined supine and orthostatic blood pressures and used 24-hour ambulatory blood pressure monitoring to assess the presence or absence of orthostatic hypotension (OH), supine hypertension (SH), nocturnal hypertension (NH), and loss of nocturnal blood pressure dips (non-dipping). CMBs were found in 13 (10.2%) patients, and the median number of CMBs was 1 (range: 1 to 10). Six of these patients had deep or infratentorial CMBs, six had strictly lobar CMBs, and one had mixed CMBs. Linear regression analysis indicated that presence of both OH and SH was independently associated with greater numbers of CMBs in deep or infratentorial regions, independent of age, sex, cardiovascular risk factors, and white matter hyperintensities. NH and non-dipping were not associated with CMBs in deep or infratentorial regions, and there was no association between blood pressure and CMBs in lobar regions. Our results suggest that the presence of both OH and SH may be related to deep or infratentorial CMBs in patients with PD.


Erythropoietin and long-acting erythropoiesis stimulating agent ameliorate non-alcoholic fatty liver disease by increasing lipolysis and decreasing lipogenesis via EPOR/STAT pathway.

  • Yusuke Tsuma‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Erythropoietin (EPO) has been reported to exert a beneficial effect on glucose metabolism in obesity. However, the effect of EPO on lipid metabolism and non-alcoholic fatty liver disease (NAFLD) was unclear. Furthermore, the effect of long acting erythropoiesis stimulating agents (ESA) on metabolism has not been poorly understood. The objective of this study was to investigate the effect of EPO and long acting ESA on NAFLD and lipid metabolism. We administered EPO and darbepoetin alpha (DEPO), a long acting ESA, by intraperitoneally injection for 4 weeks to mice with high-fat-diet (HFD)-induced obesity. EPO and DEPO treatment reduced body weight, ameliorated glucose tolerance and insulin resistance, and prevented lipid accumulation in liver and white adipose tissue (WAT). Administration of EPO and DEPO suppressed lipid synthesis-related protein in liver, including sterol regulatory element-binding protein 1 (SREBP-1), acetyl-CoA carboxylase (ACC1) and fatty acid synthase (FAS). EPO and DEPO also increased lipolysis protein in visceral WAT, including hormone-sensitive lipase (HSL), atni-adipose triglyceride lipase (ATGL). EPO and DEPO increased phosphorylation signal transducer and activator of transcription 3 (STAT3) and STAT5, transcriptional factors with crucial roles of lipid metabolism. These data suggest that EPO and DEPO ameliorated NAFLD by improving lipid metabolism via EPO/EPOR-induced STAT3 and STAT5 activation. EPO and DEPO may be a therapeutic option for NAFLD.


Hybrid Periportal Hepatocytes Regenerate the Injured Liver without Giving Rise to Cancer.

  • Joan Font-Burgada‎ et al.
  • Cell‎
  • 2015‎

Compensatory proliferation triggered by hepatocyte loss is required for liver regeneration and maintenance but also promotes development of hepatocellular carcinoma (HCC). Despite extensive investigation, the cells responsible for hepatocyte restoration or HCC development remain poorly characterized. We used genetic lineage tracing to identify cells responsible for hepatocyte replenishment following chronic liver injury and queried their roles in three distinct HCC models. We found that a pre-existing population of periportal hepatocytes, located in the portal triads of healthy livers and expressing low amounts of Sox9 and other bile-duct-enriched genes, undergo extensive proliferation and replenish liver mass after chronic hepatocyte-depleting injuries. Despite their high regenerative potential, these so-called hybrid hepatocytes do not give rise to HCC in chronically injured livers and thus represent a unique way to restore tissue function and avoid tumorigenesis. This specialized set of pre-existing differentiated cells may be highly suitable for cell-based therapy of chronic hepatocyte-depleting disorders.


Stress-Activated NRF2-MDM2 Cascade Controls Neoplastic Progression in Pancreas.

  • Jelena Todoric‎ et al.
  • Cancer cell‎
  • 2017‎

Despite expression of oncogenic KRAS, premalignant pancreatic intraepithelial neoplasia 1 (PanIN1) lesions rarely become fully malignant pancreatic ductal adenocarcinoma (PDAC). The molecular mechanisms through which established risk factors, such as chronic pancreatitis, acinar cell damage, and/or defective autophagy increase the likelihood of PDAC development are poorly understood. We show that accumulation of the autophagy substrate p62/SQSTM1 in stressed KrasG12D acinar cells is associated with PDAC development and maintenance of malignancy in human cells and mice. p62 accumulation promotes neoplastic progression by controlling the NRF2-mediated induction of MDM2, which acts through p53-dependent and -independent mechanisms to abrogate checkpoints that prevent conversion of differentiated acinar cells to proliferative ductal progenitors. MDM2 targeting may be useful for preventing PDAC development in high-risk individuals.


Free-Water Imaging in White and Gray Matter in Parkinson's Disease.

  • Christina Andica‎ et al.
  • Cells‎
  • 2019‎

This study aimed to discriminate between neuroinflammation and neuronal degeneration in the white matter (WM) and gray matter (GM) of patients with Parkinson's disease (PD) using free-water (FW) imaging. Analysis using tract-based spatial statistics (TBSS) of 20 patients with PD and 20 healthy individuals revealed changes in FW imaging indices (i.e., reduced FW-corrected fractional anisotropy (FAT), increased FW-corrected mean, axial, and radial diffusivities (MDT, ADT, and RDT, respectively) and fractional volume of FW (FW) in somewhat more specific WM areas compared with the changes of DTI indices. The region-of-interest (ROI) analysis further supported these findings, whereby those with PD showed significantly lower FAT and higher MDT, ADT, and RDT (indices of neuronal degeneration) in anterior WM areas as well as higher FW (index of neuroinflammation) in posterior WM areas compared with the controls. Results of GM-based spatial statistics (GBSS) analysis revealed that patients with PD had significantly higher MDT, ADT, and FW than the controls, whereas ROI analysis showed significantly increased MDT and FW and a trend toward increased ADT in GM areas, corresponding to Braak stage IV. These findings support the hypothesis that neuroinflammation precedes neuronal degeneration in PD, whereas WM microstructural alterations precede changes in GM.


Early Tumor Shrinkage as a Predictive Factor for Outcomes in Hepatocellular Carcinoma Patients Treated with Lenvatinib: A Multicenter Analysis.

  • Aya Takahashi‎ et al.
  • Cancers‎
  • 2020‎

We investigated the association between early tumor shrinkage (ETS) and treatment outcome in patients with hepatocellular carcinoma treated with lenvatinib (LEN). A retrospective analysis was performed in 104 patients. ETS was defined as tumor shrinkage at the first evaluation in the sum of target lesions' longest diameters from baseline according to the Response Evaluation Criteria in Solid Tumors (RECIST). The median overall survival (OS) was not reached, whereas the median progression-free survival (PFS) was 5.0 months. The receiver operating characteristic curve analysis in differentiating long-term responders (PFS ≥ 5.0 months) from short-term responders (PFS < 5.0 months) revealed an ETS cut-off value of 10%. ETS ≥ 10% was significantly correlated with better PFS and OS compared with ETS < 10%. Additionally, ETS ≥ 10% showed a better discrimination ability on prognosis compared with modified RECIST-based objective response at the first evaluation. Multivariate analysis confirmed ETS ≥ 10% as an independent predictor of better OS, as well as a Child-Pugh score of 5 and macrovascular invasion. In conclusion, ETS ≥ 10% was strongly associated with outcome in patients treated with LEN. This biomarker could allow earlier assessment of the treatment response and guide treatment decision-making for HCC.


PPARα agonist and metformin co-treatment ameliorates NASH in mice induced by a choline-deficient, amino acid-defined diet with 45% fat.

  • Shinya Okishio‎ et al.
  • Scientific reports‎
  • 2020‎

We explored the beneficial effects of GW7647, a peroxisome proliferator activated receptor α (PPARα) agonist, and metformin, an anti-diabetic drug on an advanced nonalcoholic steatohepatitis (NASH) model in rodents and investigated the possible mechanisms involved. Mice were fed control chow or a choline-deficient L-amino acid-defined diet containing 45% fat (HF-CDAA). The mice fed HF-CDAA diets for 16 weeks were divided into four groups: the no treatment (HF-CDAA), HF-CDAA containing 1000 mg/kg metformin, HF-CDAA containing 10 mg/kg GW7647, and HF-CDAA with both metformin and GW7647 groups. Metformin alone slightly deteriorated the aspartate and alanine aminotransferase (AST/ALT) values, whereas co-treatment with GW7647 and metformin greatly suppressed liver injury and fibrosis via activation of the AMP-activated protein kinase (AMPK) pathway. Further study revealed that co-treatment decreased the expression of inflammatory-, fibrogenesis-, and endoplasmic reticulum (ER) stress-related genes and increased the oxidized nicotinamide adenine dinucleotide (NAD)/reduced nicotinamide adenine dinucleotide (NADH) ratio, suggesting the superiority of co-treatment due to restoration of mitochondrial function. The additive benefits of a PPARα agonist and metformin in a HF-CDAA diet-induced advanced NASH model was firstly demonstrated, possibly through restoration of mitochondrial function and AMPK activation, which finally resulted in suppression of hepatic inflammation, ER stress, then, fibrosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: