2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

In-depth analysis of subclass-specific conformational preferences of IgG antibodies.

  • Xinsheng Tian‎ et al.
  • IUCrJ‎
  • 2015‎

IgG subclass-specific differences in biological function and in vitro stability are often referred to variations in the conformational flexibility, while this flexibility has rarely been characterized. Here, small-angle X-ray scattering data from IgG1, IgG2 and IgG4 antibodies, which were designed with identical variable regions, were thoroughly analysed by the ensemble optimization method. The extended analysis of the optimized ensembles through shape clustering reveals distinct subclass-specific conformational preferences, which provide new insights for understanding the variations in physical/chemical stability and biological function of therapeutic antibodies. Importantly, the way that specific differences in the linker region correlate with the solution structure of intact antibodies is revealed, thereby visualizing future potential for the rational design of antibodies with designated physicochemical properties and tailored effector functions. In addition, this advanced computational approach is applicable to other flexible multi-domain systems and extends the potential for investigating flexibility in solutions of macromolecules by small-angle X-ray scattering.


Neuronal trafficking of voltage-gated potassium channels.

  • Camilla S Jensen‎ et al.
  • Molecular and cellular neurosciences‎
  • 2011‎

The computational ability of CNS neurons depends critically on the specific localization of ion channels in the somatodendritic and axonal membranes. Neuronal dendrites receive synaptic inputs at numerous spines and integrate them in time and space. The integration of synaptic potentials is regulated by voltage-gated potassium (Kv) channels, such as Kv4.2, which are specifically localized in the dendritic membrane. The synaptic potentials eventually depolarize the membrane of the axon initial segment, thereby activating voltage-gated sodium channels to generate action potentials. Specific Kv channels localized in the axon initial segment, such as Kv1 and Kv7 channels, determine the shape and the rate of action potentials. Kv1 and Kv7 channels present at or near nodes of Ranvier and in presynaptic terminals also influence the propagation of action potentials and neurotransmitter release. The physiological significance of proper Kv channel localization is emphasized by the fact that defects in the trafficking of Kv channels are observed in several neurological disorders including epilepsy. In this review, we will summarize the current understanding of the mechanisms of Kv channel trafficking and discuss how they contribute to the establishment and maintenance of the specific localization of Kv channels in neurons.


Identification of a Kir3.4 mutation in congenital long QT syndrome.

  • Yanzong Yang‎ et al.
  • American journal of human genetics‎
  • 2010‎

Congenital long QT syndrome (LQTS) is a hereditary disorder that leads to sudden cardiac death secondary to fatal cardiac arrhythmias. Although many genes for LQTS have been described, the etiology remains unknown in 30%-40% of cases. In the present study, a large Chinese family (four generations, 49 individuals) with autosomal-dominant LQTS was clinically evaluated. Genome-wide linkage analysis was performed by using polymorphic microsatellite markers to map the genetic locus, and positional candidate genes were screened by sequencing for mutations. The expression pattern and functional characteristics of the mutated protein were investigated by western blotting and patch-clamp electrophysiology. The genetic locus of the LQTS-associated gene was mapped to chromosome 11q23.3-24.3. A heterozygous mutation (Kir3.4-Gly387Arg) was identified in the G protein-coupled, inwardly rectifying potassium channel subunit Kir3.4, encoded by the KCNJ5 gene. The Kir3.4-Gly387Arg mutation was present in all nine affected family members and absent in 528 ethnically matched controls. Western blotting of human cardiac tissue demonstrated significant Kir3.4 expression levels in the cardiac ventricles. Heterologous expression studies with Kir3.4-Gly387Arg revealed a loss-of-function electrophysiological phenotype resulting from reduced plasma membrane expression. Our findings suggest a role for Kir3.4 in the etiology of LQTS.


Intense Activity of the Raphe Spinal Pathway Depresses Motor Activity via a Serotonin Dependent Mechanism.

  • Jean-François Perrier‎ et al.
  • Frontiers in neural circuits‎
  • 2017‎

Motor fatigue occurring during prolonged physical activity has both peripheral and central origins. It was previously demonstrated that the excitability of motoneurons was decreased when a spillover of serotonin could activate extrasynaptic 5-HT1A receptors at the axon initial segment (AIS) of motoneurons. Here we investigated the impact of massive synaptic release of serotonin on motor behavior in an integrated preparation of the adult turtle performing fictive scratching behaviors. We found that a prolonged electrical stimulation of the raphe spinal pathway induced a reversible inhibition of the motor behavior that lasted several tens of seconds. The effect disappeared when the spinal cord was perfused with an antagonist for 5-HT1A receptors. By demonstrating a direct impact of serotonin on motor behavior, we suggest a central role of this monoamine behind central fatigue.


Small-angle x-ray scattering screening complements conventional biophysical analysis: comparative structural and biophysical analysis of monoclonal antibodies IgG1, IgG2, and IgG4.

  • Xinsheng Tian‎ et al.
  • Journal of pharmaceutical sciences‎
  • 2014‎

A crucial step in the development of therapeutic monoclonal antibodies is the selection of robust pharmaceutical candidates and screening of efficacious protein formulations to increase the resistance toward physicochemical degradation and aggregation during processing and storage. Here, we introduce small-angle X-ray scattering (SAXS) to characterize antibody solution behavior, which strongly complements conventional biophysical analysis. First, we apply a variety of conventional biophysical techniques for the evaluation of structural, conformational, and colloidal stability and report a systematic comparison between designed humanized IgG1, IgG2, and IgG4 with identical variable regions. Then, the high information content of SAXS data enables sensitive detection of structural differences between three IgG subclasses at neutral pH and rapid formation of dimers of IgG2 and IgG4 at low pH. We reveal subclass-specific variation in intermolecular repulsion already at low and medium protein concentrations, which explains the observed improved stability of IgG1 with respect to aggregation. We show how excipients dramatically influence such repulsive effects, hence demonstrating the potential application of extensive SAXS screening in antibody selection, eventual engineering, and formulation development.


CyPPA, a Positive SK3/SK2 Modulator, Reduces Activity of Dopaminergic Neurons, Inhibits Dopamine Release, and Counteracts Hyperdopaminergic Behaviors Induced by Methylphenidate.

  • Kjartan F Herrik‎ et al.
  • Frontiers in pharmacology‎
  • 2012‎

Dopamine (DA) containing midbrain neurons play critical roles in several psychiatric and neurological diseases, including schizophrenia and attention deficit hyperactivity disorder, and the substantia nigra pars compacta neurons selectively degenerate in Parkinson's disease. Pharmacological modulation of DA receptors and transporters are well established approaches for treatment of DA-related disorders. Direct modulation of the DA system by influencing the discharge pattern of these autonomously firing neurons has yet to be exploited as a potential therapeutic strategy. Small conductance Ca(2+)-activated K(+) channels (SK channels), in particular the SK3 subtype, are important in the physiology of DA neurons, and agents modifying SK channel activity could potentially affect DA signaling and DA-related behaviors. Here we show that cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (CyPPA), a subtype-selective positive modulator of SK channels (SK3 > SK2 > > > SK1, IK), decreased spontaneous firing rate, increased the duration of the apamin-sensitive afterhyperpolarization, and caused an activity-dependent inhibition of current-evoked action potentials in DA neurons from both mouse and rat midbrain slices. Using an immunocytochemically and pharmacologically validated DA release assay employing cultured DA neurons from rats, we show that CyPPA repressed DA release in a concentration-dependent manner with a maximal effect equal to the D2 receptor agonist quinpirole. In vivo studies revealed that systemic administration of CyPPA attenuated methylphenidate-induced hyperactivity and stereotypic behaviors in mice. Taken together, the data accentuate the important role played by SK3 channels in the physiology of DA neurons, and indicate that their facilitation by CyPPA profoundly influences physiological as well as pharmacologically induced hyperdopaminergic behavior.


Trafficking of the IKs -complex in MDCK cells: site of subunit assembly and determinants of polarized localization.

  • Jens-Peter David‎ et al.
  • Traffic (Copenhagen, Denmark)‎
  • 2013‎

The voltage-gated potassium channel KV 7.1 is regulated by non-pore forming regulatory KCNE β-subunits. Together with KCNE1, it forms the slowly activating delayed rectifier potassium current IKs . However, where the subunits assemble and which of the subunits determines localization of the IKs -complex has not been unequivocally resolved yet. We employed trafficking-deficient KV 7.1 and KCNE1 mutants to investigate IKs trafficking using the polarized Madin-Darby Canine Kidney cell line. We find that the assembly happens early in the secretory pathway but provide three lines of evidence that it takes place in a post-endoplasmic reticulum compartment. We demonstrate that KV 7.1 targets the IKs -complex to the basolateral membrane, but that KCNE1 can redirect the complex to the apical membrane upon mutation of critical KV 7.1 basolateral targeting signals. Our data provide a possible explanation to the fact that KV 7.1 can be localized apically or basolaterally in different epithelial tissues and offer a solution to divergent literature results regarding the effect of KCNE subunits on the subcellular localization of KV 7.1/KCNE complexes.


Dysfunction of the Heteromeric KV7.3/KV7.5 Potassium Channel is Associated with Autism Spectrum Disorders.

  • Mette Gilling‎ et al.
  • Frontiers in genetics‎
  • 2013‎

Heterozygous mutations in the KCNQ3 gene on chromosome 8q24 encoding the voltage-gated potassium channel KV7.3 subunit have previously been associated with rolandic epilepsy and idiopathic generalized epilepsy (IGE) including benign neonatal convulsions. We identified a de novo t(3;8) (q21;q24) translocation truncating KCNQ3 in a boy with childhood autism. In addition, we identified a c.1720C > T [p.P574S] nucleotide change in three unrelated individuals with childhood autism and no history of convulsions. This nucleotide change was previously reported in patients with rolandic epilepsy or IGE and has now been annotated as a very rare SNP (rs74582884) in dbSNP. The p.P574S KV7.3 variant significantly reduced potassium current amplitude in Xenopus laevis oocytes when co-expressed with KV7.5 but not with KV7.2 or KV7.4. The nucleotide change did not affect trafficking of heteromeric mutant KV7.3/2, KV7.3/4, or KV7.3/5 channels in HEK 293 cells or primary rat hippocampal neurons. Our results suggest that dysfunction of the heteromeric KV7.3/5 channel is implicated in the pathogenesis of some forms of autism spectrum disorders, epilepsy, and possibly other psychiatric disorders and therefore, KCNQ3 and KCNQ5 are suggested as candidate genes for these disorders.


Altered Structural Expression and Enzymatic Activity Parameters in Quiescent Ulcerative Colitis: Are These Potential Normalization Criteria?

  • Sebastian Kjærgaard‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Mucosal healing determined by endoscopy is currently the remission standard for ulcerative colitis (UC). However, new criteria for remission are emerging, such as histologic normalization, which appears to correlate better to the risk of relapse. Here, we study mucosal healing on a molecular and functional level in quiescent UC. We obtained endoscopic biopsies from 33 quiescent UC patients and from 17 controls. Histology was assessed using Geboes score. Protein and mRNA levels were evaluated for the tight junction proteins claudin-2, claudin-4, occludin, and tricellulin, as well as Cl-/HCO3- exchanger DRA, and cyclo-oxygenase enzymes (COX-1, COX-2). The mucosal activity of COX-1 and COX-2 enzymes was assessed in modified Ussing chambers, measuring electrogenic ion transport (short-circuit current, SCC). Chronic inflammation was present in most UC patients. The protein level of claudin-4 was reduced, while mRNA-levels of claudin-2 and claudin-4 were upregulated in UC patients. Surprisingly, the mRNA level of COX-1 was downregulated, but was unaltered for COX-2. Basal ion transport was not affected, while COX-2 inhibition induced a two-fold larger decrease in SCC in UC patients. Despite being in clinical and endoscopic remission, quiescent UC patients demonstrated abnormal mucosal barrier properties at the molecular and functional level. Further exploration of mucosal molecular signature for revision of current remission standards should be considered.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: